On a singular p(x, <middle dot>)-integro-differential elliptic problem

被引:0
作者
Azroul, E. [1 ]
Kamali, N. [1 ]
Shimi, M. [2 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Lab Math Anal & Applicat, Fac Sci Dhar el Mahraz, Fes, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, ENS Fez, Lab Math Anal & Applicat, Fes, Morocco
关键词
Nehari manifold approach; Generalized fractional Sobolev space; Singular problem; Integrodifferential operator; BOUNDARY-VALUE PROBLEM; POSITIVE SOLUTIONS; EQUATION; LAPLACIAN; EXISTENCE;
D O I
10.1007/s11868-024-00626-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper aims to establish the existence of at least two weak solutions of a nonlocal singular problem governed by a generalized integro-differential operator with singular kernel in a bounded domain Omega of R-N with Lipschitz boundary. The main variational tool is based on the Nehari manifold approach and the fibering maps analysis. Moreover, we state and prove two embedding results of the generalized fractional Sobolev spaces into generalized weighted Lebesgue spaces, which serve as pivotal components in our principal proof.
引用
收藏
页数:24
相关论文
共 31 条
[1]   Weighted Variable Sobolev Spaces and Capacity [J].
Aydin, Ismail .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
[2]   Existence Results for Fractional p(x, .)-Laplacian Problem Via the Nehari Manifold Approach [J].
Azroul, E. ;
Benkirane, A. ;
Boumazourh, A. ;
Shimi, M. .
APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (02) :1527-1547
[3]   EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p(x)-LAPLACIAN OPERATOR [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. .
ADVANCES IN OPERATOR THEORY, 2019, 4 (02) :539-555
[4]  
Azroul E., 2021, J. Appl. Anal, V100, P383, DOI [10.1080/00036811.2019.1603372, DOI 10.1080/00036811.2019.1603372]
[5]   General fractional Sobolev space with variable exponent and applications to nonlocal problems [J].
Azroul, Elhoussine ;
Benkirane, Abdelmoujib ;
Shimi, Mohammed .
ADVANCES IN OPERATOR THEORY, 2020, 5 (04) :1512-1540
[6]   Semilinear problems for the fractional laplacian with a singular nonlinearity [J].
Barrios, Begona ;
De Bonis, Ida ;
Medina, Maria ;
Peral, Ireneo .
OPEN MATHEMATICS, 2015, 13 :390-407
[7]   A SINGULAR NONLINEAR BOUNDARY-VALUE PROBLEM - MEMBRANE RESPONSE OF A SPHERICAL CAP [J].
BAXLEY, JV .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) :497-505
[8]   SOME SINGULAR NONLINEAR BOUNDARY-VALUE-PROBLEMS [J].
BAXLEY, JV .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (02) :463-479
[9]   Nehari manifold for singular fractional p(x,.)-Laplacian problem [J].
Chammem, R. ;
Ghanmi, A. ;
Sahbani, A. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (09) :1603-1625
[10]   Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems [J].
Cui, SB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (1-2) :149-176