High-resolution spectral data predict taxonomic diversity in low diversity grasslands

被引:2
作者
Hayden, Meghan T. [1 ]
Van Cleemput, Elisa [2 ]
Suding, Katharine N. [1 ]
Lezberg, Ann [3 ]
Anacker, Brian [3 ]
Dee, Laura E. [1 ]
机构
[1] Univ Colorado Boulder, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA
[2] Leiden Univ Coll, Fac Governance & Global Affairs, Leiden, Netherlands
[3] City Boulder Open Space & Mt Pk, Boulder, CO USA
来源
ECOLOGICAL SOLUTIONS AND EVIDENCE | 2024年 / 5卷 / 03期
关键词
biodiversity monitoring; grassland ecosystems; imaging spectroscopy; remote sensing; species richness; spectral diversity; spectral variance hypothesis; wildfire; PLANT-SPECIES RICHNESS; BIODIVERSITY; FIRE; VARIABILITY; LANDSCAPE; METRICS; TRAITS;
D O I
10.1002/2688-8319.12365
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
1. Mitigating impacts of global change on biodiversity is a pressing goal for land managers, but understanding impacts is often limited by the spatial and temporal constraints of traditional in situ data. Advances in remote sensing address this challenge, in part, by enabling standardized mapping of biodiversity at large spatial scales and through time. In particular, hyperspectral imagery can detect functional and compositional characteristics of vegetation by measuring subtle differences in reflected light. 2. The spectral variance hypothesis (SVH) expects spectral diversity, or variability in reflectance across pixels, to predict vegetation diversity. However, the majority of research testing the SVH to date has been conducted in systems with controlled conditions or spatially homogenous assemblages, with little generalizability to heterogeneous real-world systems. 3. Here, we move the field forward by testing the SVH in a species-rich system with high heterogeneity resulting from variable species composition and a recent fire. We use very high spatial resolution (similar to 1 mm) hyperspectral imagery to compare spectrally derived estimates of vegetation diversity with in situ measures collected in Boulder, CO, USA. 4. We find that spectral diversity and taxonomic diversity are positively correlated only for low to moderate diversity transects, or in transects that were recently burned where vegetation diversity is low and composed primarily of C3 grasses. Additionally, we find that the relationship between spectral and taxonomic diversity depends on spatial resolution, indicating that pixel size should remain a priority for biodiversity monitoring. 5. Practical implication: The context dependency of this relationship, even with high spatial resolution data, confirms previous work that the SVH does not hold across landscapes and demonstrates the necessity for repeated, high-resolution data in order to tease apart the biological conditions underpinning the SVH. With refinement, however, the remote sensing techniques described here will offer land managers a cost-effective approach to monitor biodiversity across space and time.
引用
收藏
页数:17
相关论文
共 50 条
[41]   Spectral Heterogeneity Predicts Local-Scale Gamma and Beta Diversity of Mesic Grasslands [J].
Polley, H. Wayne ;
Yang, Chenghai ;
Wilsey, Brian J. ;
Fay, Philip A. .
REMOTE SENSING, 2019, 11 (04)
[42]   Effects of haying on vegetation communities, taxonomic diversity and sward properties in mediterranean dry grasslands: A preliminary assessment [J].
Faria, Nuno ;
Peco, Begona ;
Carmona, Carlos P. .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2018, 251 :48-58
[43]   The importance of taxonomic resolution for additive beta diversity as revealed through DNA barcoding [J].
Bringloe, Trevor T. ;
Cottenie, Karl ;
Martin, Gillian K. ;
Adamowicz, Sarah J. .
GENOME, 2016, 59 (12) :1130-1140
[44]   Portuguese wild hop diversity assessment by fast SNP genotyping using high-resolution melting [J].
Machado Jr, Julio C. ;
Faria, Miguel A. ;
Barata, Ana Maria ;
da Silva, Isabel Gomes ;
Cerenak, Andreja ;
Ferreira, Isabel M. P. L. V. O. .
JOURNAL OF APPLIED GENETICS, 2022, 63 (01) :103-114
[45]   Taxonomic and functional macroinvertebrate diversity of high-altitude ponds in the Macun Cirque, Switzerland [J].
Hill, Matthew J. ;
Wood, Paul J. ;
Mathers, Kate L. .
AQUATIC CONSERVATION-MARINE AND FRESHWATER ECOSYSTEMS, 2021, 31 (11) :3201-3214
[46]   High-precision estimation of plant alpha diversity in different ecosystems based on Sentinel-2 data [J].
Xin, Jiaxun ;
Li, Jinning ;
Zeng, Qingqiu ;
Peng, Yu ;
Wang, Yan ;
Teng, Xiaoyi ;
Bao, Qianru ;
Yang, Linyan ;
Tang, Huining ;
Liu, Yuqi ;
Xie, Jiayao ;
Qi, Yue ;
Liu, Guanchen ;
Li, Xuyao ;
Tang, Ning ;
Sun, Zhenyao ;
Zeng, Weiying ;
Wei, Ziyu ;
Chen, Heyuan ;
He, Lizheng ;
Song, Chenxi ;
Zhang, Linmin ;
Qiu, Jingting ;
Wang, Xianfei ;
Xu, Xinyao ;
Chen, Chonghao .
ECOLOGICAL INDICATORS, 2024, 166
[47]   From species descriptions to diversity patterns: the validation of taxonomic data as a keystone for ant diversity studies reproducibility and accuracy [J].
Feitosa, Rodrigo M. ;
Silva, Thiago S. R. ;
Camacho, Gabriela P. ;
Ulyssea, Monica A. ;
Ladino, Natalia ;
Oliveira, Aline M. M. ;
de Albuquerque, Emilia Z. ;
Ribas, Carla R. ;
Schmidt, Fernando A. ;
Morini, Maria Santina de C. ;
da Silva, Rogerio R. ;
Dattilo, Wesley ;
de Queiroz, Antonio C. M. ;
Baccaro, Fabricio B. ;
Santos, Jean C. ;
Carvalho, Karine S. ;
Sobrinho, Tathiana G. ;
Quinet, Yves P. ;
Moraes, Aline B. ;
Vargas, Andre B. ;
Torezan-Silingardi, Helena Maura ;
Souza, Jorge Luiz P. ;
Marques, Tatianne ;
Izzo, Thiago ;
Lange, Denise ;
dos Santos, Iracenir A. A. ;
Del-Claro, Kleber ;
Nahas, Larissa ;
Paolucci, Lucas ;
Soares, Stela A. ;
Harada, Ana Y. ;
Rabello, Ananza M. ;
da Costa-Milanez, Cinthia B. ;
Diehl-Fleig, Eduardo ;
Campos, Renata B. F. ;
Solar, Ricardo ;
Frizzo, Tiago ;
DaRocha, Wesley ;
Nogueira, Anselmo .
ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (02)
[48]   Prediction of lichen diversity in an UNESCO biosphere reserve - correlation of high resolution remote sensing data with field samples [J].
Waser, Lars T. ;
Kuechler, Meinrad ;
Schwarz, Markus ;
Ivits, Eva ;
Stofer, Silvia ;
Scheidegger, Christoph .
ENVIRONMENTAL MODELING & ASSESSMENT, 2007, 12 (04) :315-328
[49]   Prediction of lichen diversity in an UNESCO biosphere reserve – correlation of high resolution remote sensing data with field samples [J].
Lars T. Waser ;
Meinrad Kuechler ;
Markus Schwarz ;
Eva Ivits ;
Silvia Stofer ;
Christoph Scheidegger .
Environmental Modeling & Assessment, 2007, 12 :315-328
[50]   Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery [J].
Rocchini, Duccio .
REMOTE SENSING OF ENVIRONMENT, 2007, 111 (04) :423-434