Information-theoretic measures and Compton profile of H atom under finite oscillator potential

被引:1
作者
Mondal, Santanu [1 ]
Sadhukhan, Anjan [2 ]
Saha, Jayanta K. [3 ]
Roy, Amlan K. [1 ]
机构
[1] Indian Inst Sci Educ & Res IISER Kolkata, Dept Chem Sci, ,Nadia, Mohanpur 741246, India
[2] Natl Yang Ming Chiao Tung Univ, Dept Appl Chem, Hsinchu 300093, Taiwan
[3] Aliah Univ, Dept Phys, IIA-27, Newtown, Kolkata 700160, India
关键词
one-electron quantum dot; finite oscillator potential; Ritz variational method; quantum information measures; Compton profile; QUANTUM DOTS; ELECTRONIC-STRUCTURE; FISHER INFORMATION; SCATTERING; HYDROGEN; SHANNON; PLANE;
D O I
10.1088/1361-6455/ad5fd3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Information-theoretic measures for nl (2L) states of a H atom (with n=1-10 and l=0-2 , where n and l denote principal and angular momentum quantum numbers) have been investigated within a quantum dot by utilizing the Ritz variational principle, with the help of a Slater-type basis set. A well-established two-parameter (depth and width) model of finite oscillator potential is used to simulate the dot environment. The variationally optimized position (r)-space wave function is utilized to determine the momentum (p)-space wave function, leading to the generation of p-space radial density distribution. We explore the impact of cavity parameters on quantum information theoretic measures, such as Shannon (S) and Fisher information (I) entropy, in the ground as well as the excited state. The results of S were also used to test the Bialynicki-Birula-Mycielski inequality, related to the entropic uncertainty principle for the confined H atom. Some simple new fitting laws pertaining to S and I have been proposed. Furthermore, the p-space radial density is employed to derive the Compton profile of the confined H atom. Possible tunability of S,I and Compton profiles with respect to the parameters is noted.
引用
收藏
页数:14
相关论文
共 57 条
[31]   Quantum dots for live cells, in vivo imaging, and diagnostics [J].
Michalet, X ;
Pinaud, FF ;
Bentolila, LA ;
Tsay, JM ;
Doose, S ;
Li, JJ ;
Sundaresan, G ;
Wu, AM ;
Gambhir, SS ;
Weiss, S .
SCIENCE, 2005, 307 (5709) :538-544
[32]   Information theoretic measures on the two-photon transitions of hydrogen atom embedded in weakly coupled plasma environment [J].
Mondal, S. ;
Saha, J. K. ;
Mukherjee, P. K. ;
Fricke, B. .
PHYSICA SCRIPTA, 2023, 98 (04)
[33]   He atom in a quantum dot: Structural, entanglement, and information-theoretical measures [J].
Mondal, Santanu ;
Sen, Kalidas ;
Saha, Jayanta K. .
PHYSICAL REVIEW A, 2022, 105 (03)
[34]   Analysis of Compton profile through information theory in H-like atoms inside impenetrable sphere [J].
Mukherjee, Neetik ;
Roy, Amlan K. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (23)
[35]   Information-entropic measures in free and confined hydrogen atom [J].
Mukherjee, Neetik ;
Roy, Amlan K. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2018, 118 (14)
[36]   Fisher information in confined hydrogen-like ions [J].
Mukherjee, Neetik ;
Majumdar, Sangita ;
Roy, Amlan K. .
CHEMICAL PHYSICS LETTERS, 2018, 691 :449-455
[37]   Calculation of information entropies for the 1s2state of helium-like ions [J].
Nasser, Ibraheem ;
Zeama, Mostafa ;
Abdel-Hady, Afaf .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2021, 121 (05)
[38]  
Nielsen M. A., 2010, Quantum Computation and Quantum Information
[39]   Doped nanocrystals [J].
Norris, David J. ;
Efros, Alexander L. ;
Erwin, Steven C. .
SCIENCE, 2008, 319 (5871) :1776-1779
[40]   Linear and Nonlinear Optical Properties in Spherical Quantum Dots: Generalized Hulthen Potential [J].
Onyeaju, M. C. ;
Idiodi, J. O. A. ;
Ikot, A. N. ;
Solaimani, M. ;
Hassanabadi, H. .
FEW-BODY SYSTEMS, 2016, 57 (09) :793-805