The Galvin property under the ultrapower axiom

被引:0
|
作者
Benhamou, Tom [1 ]
Goldberg, Gabriel [2 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2024年
关键词
Galvin's property; the Ultrapower Axiom; inner models; the Tukey order; p-point ultrafilters; ULTRAFILTERS;
D O I
10.4153/S0008414X2400052X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of the Galvin property from Benhamou, Garti, and Shelah (2023, Proceedings of the American Mathematical Society 151, 1301-1309) and Benhamou (2023, Saturation properties in canonical inner models, submitted). In particular, we deepen the connection between certain diamond-like principles and non-Galvin ultrafilters. We also show that any Dodd sound non p-point ultrafilter is non-Galvin. We use these ideas to formulate what appears to be the optimal large cardinal hypothesis implying the existence of a non-Galvin ultrafilter, improving on a result from Benhamou and Dobrinen (2023, Journal of Symbolic Logic, 1-34). Finally, we use a strengthening of the Ultrapower Axiom to prove that in all the known canonical inner models, a $\kappa $ -complete ultrafilter has the Galvin property if and only if it is an iterated sum of p-points.
引用
收藏
页数:32
相关论文
共 50 条