The Galvin property under the ultrapower axiom

被引:0
|
作者
Benhamou, Tom [1 ]
Goldberg, Gabriel [2 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2024年
关键词
Galvin's property; the Ultrapower Axiom; inner models; the Tukey order; p-point ultrafilters; ULTRAFILTERS;
D O I
10.4153/S0008414X2400052X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of the Galvin property from Benhamou, Garti, and Shelah (2023, Proceedings of the American Mathematical Society 151, 1301-1309) and Benhamou (2023, Saturation properties in canonical inner models, submitted). In particular, we deepen the connection between certain diamond-like principles and non-Galvin ultrafilters. We also show that any Dodd sound non p-point ultrafilter is non-Galvin. We use these ideas to formulate what appears to be the optimal large cardinal hypothesis implying the existence of a non-Galvin ultrafilter, improving on a result from Benhamou and Dobrinen (2023, Journal of Symbolic Logic, 1-34). Finally, we use a strengthening of the Ultrapower Axiom to prove that in all the known canonical inner models, a $\kappa $ -complete ultrafilter has the Galvin property if and only if it is an iterated sum of p-points.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] The Ultrapower Axiom
    Goldberg, Gabriel
    TRENDS IN SET THEORY, 2020, 752 : 93 - 111
  • [2] The Ultrapower Axiom and the GCH
    Goldberg, Gabriel
    JOURNAL OF MATHEMATICAL LOGIC, 2021, 21 (03)
  • [3] Negating the Galvin property
    Benhamou, Tom
    Garti, Shimon
    Poveda, Alejandro
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 108 (01): : 190 - 237
  • [4] Strong compactness and the ultrapower axiom I: the least strongly compact cardinal
    Goldberg, Gabriel
    JOURNAL OF MATHEMATICAL LOGIC, 2022, 22 (02)
  • [5] The Ultrapower Axiom UA and the number of normal measures over ℵ1 and ℵ2
    Apter, Arthur W.
    TBILISI MATHEMATICAL JOURNAL, 2021, 14 (01) : 49 - 53
  • [6] Nice Hamel bases under the Covering Property Axiom
    Krzysztof Ciesielski
    Janusz Pawlikowski
    Acta Mathematica Hungarica, 2004, 105 : 197 - 213
  • [7] Nice hamel bases under the Covering Property Axiom
    Ciesielski, K
    Pawlikowski, J
    ACTA MATHEMATICA HUNGARICA, 2004, 105 (03) : 197 - 213
  • [8] Weak diamond and Galvin's property
    Garti, Shimon
    PERIODICA MATHEMATICA HUNGARICA, 2017, 74 (01) : 128 - 136
  • [9] KUREPA TREES AND THE FAILURE OF THE GALVIN PROPERTY
    Benhamou, Tom
    Garti, Shimon
    Shelah, Saharon
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (03) : 1301 - 1309
  • [10] Weak diamond and Galvin’s property
    Shimon Garti
    Periodica Mathematica Hungarica, 2017, 74 : 128 - 136