Automatic Vectorization of Power Lines from Airborne Lidar Point Clouds

被引:0
|
作者
Maset, Eleonora [1 ]
Fusiello, Andrea [1 ]
机构
[1] Univ Udine, Polytech Dept Engn & Architecture DPIA, Udine, Italy
来源
MID-TERM SYMPOSIUM THE ROLE OF PHOTOGRAMMETRY FOR A SUSTAINABLE WORLD, VOL. 48-2 | 2024年
关键词
Power lines detection; Airborne lidar; Point cloud segmentation; Model fitting; J-Linkage;
D O I
10.5194/isprs-archives-XLVIII-2-2024-225-2024
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In recent years, power line inspections have benefited from the use of the lidar surveying technology, which enables safe and rapid data acquisition, even in challenging environments. To further optimize monitoring operations and reduce time and costs, automatic processing of the point clouds obtained is of greatest importance. This work presents a complete pipeline for processing power line data that includes (i) lidar point cloud segmentation using a Fully Convolutional Network, (ii) individual pylon identification via DBSCAN clustering, and (iii) the automatic extraction and modelling of any number of cables using a multi-model fitting algorithm based on the J-Linkage method. The proposed procedure is tested on a 36 km-long power line, resulting in a F1-score of 97.6% for pylons and 98.5% for the vectorized cables. [GRAPHICS] .
引用
收藏
页码:225 / 231
页数:7
相关论文
共 50 条
  • [21] Improving the Accuracy of Automatic Reconstruction of 3D Complex Buildings Models from Airborne Lidar Point Clouds
    Kulawiak, Marek
    Lubniewski, Zbigniew
    REMOTE SENSING, 2020, 12 (10)
  • [22] Extracting Highway Cross Slopes From Airborne and Mobile LiDAR Point Clouds
    Shams, Alireza
    Sarasua, Wayne A.
    Russell, Brook T.
    Davis, William J.
    Post, Christopher
    Rastiveis, Heidar
    Famili, Afshin
    Cassule, Leo
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (02) : 372 - 384
  • [23] A global optimization approach to roof segmentation from airborne lidar point clouds
    Yan, Jixing
    Shan, Jie
    Jiang, Wanshou
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 94 : 183 - 193
  • [24] Estimating wood quality attributes from dense airborne LiDAR point clouds
    Nicolas Cattaneo
    Stefano Puliti
    Carolin Fischer
    Rasmus Astrup
    Forest Ecosystems, 2024, 11 (02) : 226 - 235
  • [25] An Active Learning Method for DEM Extraction From Airborne LiDAR Point Clouds
    Hui, Zhenyang
    Jin, Shuanggen
    Cheng, Penggen
    Ziggah, Yao Yevenyo
    Wang, Leyang
    Wang, Yuqian
    Hu, Haiying
    Hu, Youjian
    IEEE ACCESS, 2019, 7 : 89366 - 89378
  • [26] Estimating wood quality attributes from dense airborne LiDAR point clouds
    Cattaneo, Nicolas
    Puliti, Stefano
    Fischer, Carolin
    Astrup, Rasmus
    FOREST ECOSYSTEMS, 2024, 11
  • [27] An Approach to Map Visibility in the Built Environment From Airborne LiDAR Point Clouds
    Zhang, Guan-Ting
    Verbree, Edward
    Wang, Xiao-Jun
    IEEE ACCESS, 2021, 9 : 44150 - 44161
  • [28] PROBABILISTIC CLUTTER MAPS OF FORESTED TERRAIN FROM AIRBORNE LIDAR POINT CLOUDS
    Lee, Heezin
    Starek, Michael J.
    Blundell, S. Bruce
    Gard, Christopher
    Puffenberger, Harry
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2654 - 2657
  • [29] Automatic building extraction and segmentation directly from Lidar point clouds
    Jiang, Jingjue
    Ming, Ying
    GEOINFORMATICS 2006: REMOTELY SENSED DATA AND INFORMATION, 2006, 6419
  • [30] Automatic extraction of salient geometric entities from LIDAR point clouds
    Auer, Stefan
    Hinz, Stefan
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 2507 - 2510