A framework based on physics-informed graph neural ODE: for continuous spatial-temporal pandemic prediction

被引:0
|
作者
Cheng, Haodong [1 ]
Mao, Yingchi [1 ,2 ]
Jia, Xiao [1 ]
机构
[1] Hohai Univ, Coll Comp Sci & Software Engn, Nanjing, Peoples R China
[2] Hohai Univ, Coll Comp Sci & Software Engn, Key Lab Water Big Data Technol Minist, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Time series prediction; Physical guidance; Pandemic prediction; Data-driven models; Neural ODE networks; NETWORKS;
D O I
10.1007/s10489-024-05834-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Physics-informed spatial-temporal discrete sequence learning networks have great potential in solving partial differential equations and time series prediction compared to traditional fully connected PINN algorithms, and can serve as the foundation for data-driven sequence prediction modeling and inverse problem analysis. However, such existing models are unable to deal with inverse problem scenarios in which the parameters of the physical process are time-varying and unknown, while usually failing to make predictions in continuous time. In this paper, we propose a continuous time series prediction algorithm constructed by the physics-informed graph neural ordinary differential equation (PGNODE). Proposed parameterized GNODE-GRU and physics-informed loss constraints are used to explicitly characterize and solve unknown time-varying hyperparameters. The GNODE solver integrates this physical parameter to predict the sequence value at any time. This paper uses epidemic prediction tasks as a case study, and experimental results demonstrate that the proposed algorithm can effectively improve the prediction accuracy of the spread of epidemics in the future continuous time.
引用
收藏
页码:12661 / 12675
页数:15
相关论文
共 50 条
  • [21] Meta Graph Transformer: A Novel Framework for Spatial-Temporal Traffic Prediction
    Ye, Xue
    Fang, Shen
    Sun, Fang
    Zhang, Chunxia
    Xiang, Shiming
    NEUROCOMPUTING, 2022, 491 : 544 - 563
  • [22] Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting
    Fang, Zheng
    Long, Qingqing
    Song, Guojie
    Xie, Kunqing
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2021, : 364 - 373
  • [23] Towards physics-informed neural networks for landslide prediction
    Dahal, Ashok
    Lombardo, Luigi
    ENGINEERING GEOLOGY, 2025, 344
  • [24] Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting
    Fang, Zheng
    Long, Qingqing
    Song, Guojie
    Xie, Kunqing
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 364 - 373
  • [25] Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    IEEE ACCESS, 2023, 11 : 97920 - 97929
  • [26] Spatial-Temporal Dual Graph Neural Network for Pedestrian Trajectory Prediction
    Zou, Yuming
    Piao, Xinglin
    Zhang, Yong
    Hu, Yongli
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1212 - 1217
  • [27] Physics-Informed Graph Neural Networks for Water Distribution Systems
    Ashraf, Inaam
    Strotherm, Janine
    Hermes, Luca
    Hammer, Barbara
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 20, 2024, : 21905 - 21913
  • [28] A dynamical spatial-temporal graph neural network for traffic demand prediction
    Huang, Feihu
    Yi, Peiyu
    Wang, Jince
    Li, Mengshi
    Peng, Jian
    Xiong, Xi
    INFORMATION SCIENCES, 2022, 594 : 286 - 304
  • [29] Physics-informed and graph neural networks for enhanced inverse analysis
    Di Lorenzo, Daniele
    Champaney, Victor
    Ghnatios, Chady
    Cueto, Elias
    Chinesta, Francisco
    ENGINEERING COMPUTATIONS, 2024,
  • [30] Prediction of subsonic cascade flow fields by physics-informed graph neural networks with unbalanced data
    Feng, Yunyang
    Yuan, Wei
    Song, Xizhen
    Yan, Zhaoqi
    Pan, Tianyu
    Aerospace Science and Technology, 2025, 162