A Deep Serial Model and Predictive Control for Piezo-Actuated Positioning Stages

被引:2
作者
Dong, Fei [1 ,2 ]
Xie, Hongyang [3 ]
Hu, Qinglei [1 ,2 ]
You, Keyou [4 ]
Zhong, Jianpeng [5 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Tianmushan Lab, Hangzhou 310023, Peoples R China
[3] Beihang Univ, Sch Cyber Sci & Technol, Beijing 100191, Peoples R China
[4] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Automat, Beijing 100084, Peoples R China
[5] Beihang Univ, Int Innovat Inst, Hangzhou Innovat Inst, Hangzhou 100191, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Feedforward neural network (FNN); model predictive control (MPC); piezo-actuated positioning stage; HYSTERESIS; COMPENSATION;
D O I
10.1109/TMECH.2024.3454514
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The inherent hysteresis nonlinearity of piezo-actuated positioning stages (piezo-stages) is very difficult to deal with due to the amplitude- and frequency-dependent characteristics, which severely limits the tracking accuracy for high speed trajectories. In this article, we first develop a deep serial model to describe the dynamics of the piezo-stage by using historical voltage-displacement data over a period of time. It achieves relative prediction errors less than 0.16% on sinusoidal trajectories with frequencies greater than 72% of the resonance frequency of the piezo-stage through an elaborately designed network structure that includes direct connections between the input layer and the output layer. Then, we design an integral model predictive control (iMPC) and build a feedforward neural network (FNN) to learn its optimal solution offline. This forms the proposed FNN-iMPC and ensures the feasibility of evaluating the control law within the sampling time of 0.1 ms. It achieves a maximum positioning error of 0.02 mu m for a +/- 32 mu m staircase reference signal and a maximum tracking error of 0.19 mu m for a sinusoidal reference signal with a range of 10 mu m and a frequency of 500 Hz in real experiments.
引用
收藏
页数:12
相关论文
共 36 条
[1]   Neural network based predictive control with optimized search space for dynamic tracking of a piezo-actuated nano stage [J].
Ahmed, Khubab ;
Yan, Peng ;
Zhang, Zhiming .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2024, 35 (01) :114-126
[2]   Inversion-Free Hysteresis Compensation via Adaptive Conditional Servomechanism With Application to Nanopositioning Control [J].
Al-Nadawi, Yasir K. ;
Tan, Xiaobo ;
Khalil, Hassan K. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (05) :1922-1935
[3]   Control strategy of a piezoelectric stage based on the parameter-dependent Bouc-Wen model under condition variations [J].
Cai, Jingnan ;
Dong, Wei ;
Gao, Yongzhuo ;
Nagamune, Ryozo .
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2024, 86 :140-152
[4]   An Inversion-Based Model Predictive Control With an Integral-of-Error State Variable for Piezoelectric Actuators [J].
Cao, Y. ;
Cheng, L. ;
Chen, X. B. ;
Peng, J. Y. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2013, 18 (03) :895-904
[5]  
Chan KJ, 2021, P AMER CONTR CONF, P3475, DOI 10.23919/ACC50511.2021.9482849
[6]   Neural-Network-Based Nonlinear Model Predictive Control for Piezoelectric Actuators [J].
Cheng, Long ;
Liu, Weichuan ;
Hou, Zeng-Guang ;
Yu, Junzhi ;
Tan, Min .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (12) :7717-7727
[7]   Dynamic inversion-based hysteresis compensation using extended high-gain observe [J].
Chowdhury, Dhrubajit ;
Al-Nadawi, Yasir K. ;
Tan, Xiaobo .
AUTOMATICA, 2022, 135
[8]  
Dong F., 2023, Proc. China Autom. Congress, P6119
[9]   Standoff Tracking Using DNN-Based MPC With Implementation on FPGA [J].
Dong, Fei ;
Li, Xingchen ;
You, Keyou ;
Song, Shiji .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (05) :1998-2010
[10]  
Gao X, 2022, IEEE-ASME T MECH, V27, P3977, DOI [10.1109/TPAMI.2022.3205910, 10.1109/TMECH.2022.3150399]