Weighted p-Laplacian parabolic equation and (p, α, β)-spectrum

被引:0
作者
Shuang, Zhen [1 ]
Xiao, Jie [1 ]
机构
[1] Mem Univ, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Weighted p-Laplace; (p; alpha; beta)-spectrum; signal decomposition;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A weighted p-Laplacian parabolic equation is studied and applied to achieve (p, alpha,beta)-spectrum and decomposition of a signal. Weak solutions to the equation are existent by the Faedo-Galerkin method. (p, alpha, beta)-spectrum and decomposition are acquired by means of eigenfunctions of Delta(p,alpha) and fractional order derivatives.
引用
收藏
页码:405 / 437
页数:33
相关论文
共 21 条
[1]   Weak solutions for p-Laplacian equation [J].
Bhuvaneswari, Venkatasubramaniam ;
Lingeshwaran, Shangerganesh ;
Balachandran, Krishnan .
ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (04) :319-334
[2]   Asymptotic profiles of nonlinear homogeneous evolution equations of gradient flow type [J].
Bungert, Leon ;
Burger, Martin .
JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (03) :1061-1092
[3]   A Note on Aubin-Lions-DubinskiA Lemmas [J].
Chen, Xiuqing ;
Juengel, Ansgar ;
Liu, Jian-Guo .
ACTA APPLICANDAE MATHEMATICAE, 2014, 133 (01) :33-43
[4]   Introducing the p-Laplacian spectra [J].
Cohen, Ido ;
Gilboa, Guy .
SIGNAL PROCESSING, 2020, 167 (167)
[5]   Stable Explicit p-Laplacian Flows Based on Nonlinear Eigenvalue Analysis [J].
Cohen, Ido ;
Falik, Adi ;
Gilboa, Guy .
SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, SSVM 2019, 2019, 11603 :315-327
[6]   THREE REPRESENTATIONS OF THE FRACTIONAL p-LAPLACIAN: SEMIGROUP, EXTENSION AND BALAKRISHNAN FORMULAS [J].
del Teso, Felix ;
Gomez-Castro, David ;
Vazquez, Juan Luis .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (04) :966-1002
[7]  
Gatto P, 2015, J SCI COMPUT, V65, P249, DOI 10.1007/s10915-014-9959-1
[8]   WEIGHTED SOBOLEV SPACES AND EMBEDDING THEOREMS [J].
Gol'dshtein, V. ;
Ukhlov, A. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (07) :3829-3850
[9]   SOME REMARKS ON BOUNDARY OPERATORS OF BESSEL EXTENSIONS [J].
Goodman, Jesse ;
Spector, Daniel .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03) :493-509
[10]  
Hytonen T., 2016, MARTINGALES LITTLEWO, VI