Substation flood precipitation forecasting model based on spatio-temporal sequence UNet depth network

被引:0
作者
Ke, Jiaying [1 ]
Chen, Shubo [2 ]
Chuai, Xiaoming [2 ]
Yao, Degui [1 ]
机构
[1] State Grid Henan Elect Power Res Inst, Zhengzhou, Henan, Peoples R China
[2] Henan Polytech Univ, Jiaozuo 454000, Henan, Peoples R China
来源
PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ARTIFICIAL INTELLIGENCE, PEAI 2024 | 2024年
关键词
precipitation forecast; UNet network; deep learning; radar image;
D O I
10.1145/3674225.3674344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Extreme climate change can intensify precipitation events in local areas. In order to predict the future precipitation intensity in the area around the substation within a short period of time, a forecasting model based on a spatio-temporal sequence depth network is proposed in this paper. The precipitation forecast is formulated as a spatio-temporal sequence forecasting problem, in which both the input and forecast targets are spatio-temporal sequences. The input-to-state and state-to-state transformations are performed using the convolutional structure in Unet, and an end-to-end trainable model is built for the precipitation forecasting problem. Experiments conducted on radar images from 2019 to 2022 show that the proposed method can better capture spatio-temporal correlations and outperforms fully connected long- and short-term memory networks and convolutional neural networks for short-time precipitation forecasting in areas around substations.
引用
收藏
页码:660 / 665
页数:6
相关论文
共 11 条
[1]   Convolutional neural network: a review of models, methodologies and applications to object detection [J].
Dhillon, Anamika ;
Verma, Gyanendra K. .
PROGRESS IN ARTIFICIAL INTELLIGENCE, 2020, 9 (02) :85-112
[2]   Long-Term Recurrent Convolutional Networks for Visual Recognition and Description [J].
Donahue, Jeff ;
Hendricks, Lisa Anne ;
Rohrbach, Marcus ;
Venugopalan, Subhashini ;
Guadarrama, Sergio ;
Saenko, Kate ;
Darrell, Trevor .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (04) :677-691
[3]  
Liu Qi, 2021, China Flood Control and Drought Relief, V31, P48
[4]   A Review on Deep Learning Techniques for Video Prediction [J].
Oprea, Sergiu ;
Martinez-Gonzalez, Pablo ;
Garcia-Garcia, Alberto ;
Castro-Vargas, John Alejandro ;
Orts-Escolano, Sergio ;
Garcia-Rodriguez, Jose ;
Argyros, Antonis .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (06) :2806-2826
[5]   Deep learning and process understanding for data-driven Earth system science [J].
Reichstein, Markus ;
Camps-Valls, Gustau ;
Stevens, Bjorn ;
Jung, Martin ;
Denzler, Joachim ;
Carvalhais, Nuno ;
Prabhat .
NATURE, 2019, 566 (7743) :195-204
[6]   USE OF NWP FOR NOWCASTING CONVECTIVE PRECIPITATION [J].
Sun, Juanzhen ;
Xue, Ming ;
Wilson, James W. ;
Zawadzki, Isztar ;
Ballard, Sue P. ;
Onvlee-Hooimeyer, Jeanette ;
Joe, Paul ;
Barker, Dale M. ;
Li, Ping-Wah ;
Golding, Brian ;
Xu, Mei ;
Pinto, James .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2014, 95 (03) :409-426
[7]  
Sutskever I, 2014, ADV NEUR IN, V27
[8]  
Wang XY., 2019, J. Meteorol. Environ, V35, P15, DOI [10.3969/j.issn.1673-503X.2019.02.003, DOI 10.3969/J.ISSN.1673-503X.2019.02.003]
[9]  
Xiaoxiao M., 2021, IEEE Transactions on Knowledge and Data Engineering, P1
[10]  
Yizeng H., 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence, V44, P46