A Systematic Review of Real-Time Deep Learning Methods for Image-Based Cancer Diagnostics

被引:2
作者
Sriraman, Harini [1 ]
Badarudeen, Saleena [1 ]
Vats, Saransh [1 ]
Balasubramanian, Prakash [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Chennai 600127, India
关键词
artificial intelligence; AI; machine learning; DL; CNN; healthcare; real-time diagnosis; classification; image processing; elastography; feedforward neural network; ELASTOGRAPHY; NETWORKS; CLUSTER; CT;
D O I
10.2147/JMDH.S446745
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Deep Learning (DL) drives academics to create models for cancer diagnosis using medical image processing because of its innate ability to recognize difficult-to-detect patterns in complex, noisy, and massive data. The use of deep learning algorithms for realtime cancer diagnosis is explored in depth in this work. Real-time medical diagnosis determines the illness or condition that accounts for a patient's symptoms and outward physical manifestations within a predetermined time frame. With a waiting period of anywhere between 5 days and 30 days, there are currently several ways, including screening tests, biopsies, and other prospective methods, that can assist in discovering a problem, particularly cancer. This article conducts a thorough literature review to understand how DL affects the length of this waiting period. In addition, the accuracy and turnaround time of different imaging modalities is evaluated with DL-based cancer diagnosis. Convolutional neural networks are critical for real-time cancer diagnosis, with models achieving up to 99.3% accuracy. The effectiveness and cost of the infrastructure required for real-time image-based medical diagnostics are evaluated. According to the report, generalization problems, data variability, and explainable DL are some of the most significant barriers to using DL in clinical trials. Making DL applicable for cancer diagnosis will be made possible by explainable DL.
引用
收藏
页码:4411 / 4425
页数:15
相关论文
共 98 条
[1]   Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art [J].
Adegun, Adekanmi ;
Viriri, Serestina .
ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (02) :811-841
[2]   Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis [J].
Aggarwal, Ravi ;
Sounderajah, Viknesh ;
Martin, Guy ;
Ting, Daniel S. W. ;
Karthikesalingam, Alan ;
King, Dominic ;
Ashrafian, Hutan ;
Darzi, Ara .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[3]   Real-time Genomic Characterization of Advanced Pancreatic Cancer to Enable Precision Medicine [J].
Aguirre, Andrew J. ;
Nowak, Jonathan A. ;
Camarda, Nicholas D. ;
Moffitt, Richard A. ;
Ghazani, Arezou A. ;
Hazar-Rethinam, Mehlika ;
Raghavan, Srivatsan ;
Kim, Jaegil ;
Brais, Lauren K. ;
Ragon, Dorisanne ;
Welch, Marisa W. ;
Reilly, Emma ;
McCabe, Devin ;
Marini, Lori ;
Anderka, Kristin ;
Helvie, Karla ;
Oliver, Nelly ;
Babic, Ana ;
Da Silva, Annacarolina ;
Nadres, Brandon ;
Van Seventer, Emily E. ;
Shahzade, Heather A. ;
St Pierre, Joseph P. ;
Burke, Kelly P. ;
Clancy, Thomas ;
Cleary, James M. ;
Doyle, Leona A. ;
Jajoo, Kunal ;
McCleary, Nadine J. ;
Meyerhardt, Jeffrey A. ;
Murphy, Janet E. ;
Ng, Kimmie ;
Patel, Anuj K. ;
Perez, Kimberly ;
Rosenthal, Michael H. ;
Rubinson, Douglas A. ;
Ryou, Marvin ;
Shapiro, Geoffrey I. ;
Sicinska, Ewa ;
Silverman, Stuart G. ;
Nagy, Rebecca J. ;
Lanman, Richard B. ;
Knoerzer, Deborah ;
Welsch, Dean J. ;
Yurgelun, Matthew B. ;
Fuchs, Charles S. ;
Garraway, Levi A. ;
Getz, Gad ;
Hornick, Jason L. ;
Johnson, Bruce E. .
CANCER DISCOVERY, 2018, 8 (09) :1096-1111
[4]  
Ai A, 2021, BioMed Rese Intern, V9, P2296
[5]  
Al A, 2021, Complexity, V20, P1
[6]   A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification [J].
Al-antari, Mugahed A. ;
Al-masni, Mohammed A. ;
Choi, Mun-Taek ;
Han, Seung-Moo ;
Kim, Tae-Seong .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2018, 117 :44-54
[7]  
Almadhoun HR, 2022, Int J Acad Eng Rese, V6, P29
[8]   An explainable machine learning framework for lung cancer hospital length of stay prediction [J].
Alsinglawi, Belal ;
Alshari, Osama ;
Alorjani, Mohammed ;
Mubin, Omar ;
Alnajjar, Fady ;
Novoa, Mauricio ;
Darwish, Omar .
SCIENTIFIC REPORTS, 2022, 12 (01)
[9]   Preprocessing of Breast Cancer Images to Create Datasets for Deep-CNN [J].
Beeravolu, Abhijith Reddy ;
Azam, Sami ;
Jonkman, Mirjam ;
Shanmugam, Bharanidharan ;
Kannoorpatti, Krishnan ;
Anwar, Adnan .
IEEE ACCESS, 2021, 9 :33438-33463
[10]  
Bhattacharyy D, 2023, Practl Appl, V23, P23