Tailoring Stable PEO-Based Electrolyte/Electrodes Interfaces via Molecular Coordination Regulating Enables 4.5 V Solid-State Lithium Metal Batteries

被引:6
作者
He, Chaowei [1 ]
Ying, Hangjun [1 ]
Cai, Lucheng [1 ]
Chen, Hengquan [2 ,3 ,4 ]
Xu, Zuojie [1 ]
Liu, Shenwen [1 ]
Huang, Pengfei [1 ]
Zhang, Haiyuan [5 ]
Song, Wenlong [5 ]
Zhang, Jian [5 ]
Shi, Lu [5 ]
Gao, Weiwei [5 ]
Li, Dan [5 ]
Han, Wei-Qiang [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310058, Peoples R China
[2] Westlake Univ Hangzhou, Ctr Artificial Photosynth Solar Fuels, Zhejiang 310024, Peoples R China
[3] Westlake Univ, Sch Sci, Dept Chem, Hangzhou 310024, Zhejiang, Peoples R China
[4] Westlake Univ, Res Ctr Ind Future, Hangzhou 310024, Zhejiang, Peoples R China
[5] Tianneng Saft Energy Co LTD, Huzhou 313100, Peoples R China
基金
中国国家自然科学基金;
关键词
coordination interaction; cycling stability; electrode/electrolyte interfaces; PEO-based electrolytes; solid-state lithium metal batteries; POLYMER ELECTROLYTES; MECHANICAL-PROPERTIES; IONIC-CONDUCTIVITY; DENDRITE; DEPOSITION; GROWTH;
D O I
10.1002/adfm.202410350
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state lithium metal batteries (SSLMBs) with poly (ethylene oxide) (PEO)-based electrolytes have increasingly become one of the most promising battery technologies due to high energy density and safety. However, adverse electrode/electrolyte interface compatibility issues hinder further application. Herein, a PEO-based composite solid electrolyte with excellent anode and cathode interfacial compatibility is designed via the coordination modulation strategy induced by lithium difluorobis(oxalato)phosphate (DFBOP). By utilizing this electrolyte, the robust inorganic-rich interphase involving LiF, LixPOyFz, and P & horbar;O components is in situ generated on lithium (Li) anode and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode surfaces via forceful coordination among PEO, lithium bis(trifluoromethanesulphonyl)imide, and DFBOP and subsequent adjustment of front orbital energy levels. It contributes to homogeneous lithium deposition and an effective impediment of PEO oxidation decomposition at high voltage, promoting superior interfacial stability. Consequently, Li-symmetric cells with modified electrolyte can achieve a stable cycle over 7000 h at 0.2 mA cm-2. Specially, the cathode electrolyte interphase with a unique organic-inorganic interpenetration network structure enables the 4.5 V Li/NCM811 cells to cycle steadily over 100 cycles, with a high discharge capacity of 215.4 mAh g-1 and initial coulombic efficiency of 91.23%. This research has shed light on the interfacial design of PEO-based electrolytes from the perspective of electrolyte coordination regulation to construct high-performance SSLMBs. The poly (ethylene oxide) (PEO)-based electrolyte with excellent anode and cathode interfacial stability is constructed via the molecular coordination modulation induced by difluorobis(oxalato)phosphate (DFBOP). The introduction of DFBOP can facilitate the in situ generation of robust inorganic-rich interphase involving LiF, LixPOyFz, and P & horbar;O on electrode surfaces, enabling the stable operation of lithium (Li) symmetric cells over 7000 h and 4.5 V Li/LiNi0.8Co0.1Mn0.1O2 cells over 100 cycles. image
引用
收藏
页数:15
相关论文
共 73 条
  • [11] Tailoring inorganic-polymer composites for the mass production of solid-state batteries
    Fan, Li-Zhen
    He, Hongcai
    Nan, Ce-Wen
    [J]. NATURE REVIEWS MATERIALS, 2021, 6 (11) : 1003 - 1019
  • [12] Insights into the Anode-Initiated and Grain Boundary-Initiated Mechanisms for Dendrite Formation in All-Solid-State Lithium Metal Batteries
    Gu, Zhengcheng
    Song, Dongxing
    Luo, Shuting
    Liu, Hexin
    Sun, Ximei
    Zhu, Lingyun
    Ma, Weigang
    Zhang, Xing
    [J]. ADVANCED ENERGY MATERIALS, 2023, 13 (45)
  • [13] Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries
    Hou, Li-Peng
    Yao, Nan
    Xie, Jin
    Shi, Peng
    Sun, Shu-Yu
    Jin, Cheng-Bin
    Chen, Cheng-Meng
    Liu, Quan-Bing
    Li, Bo-Quan
    Zhang, Xue-Qiang
    Zhang, Qiang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (20)
  • [14] External-pressure-electrochemistry coupling in solid-state lithium metal batteries
    Hu, Xia
    Zhang, Zhijia
    Zhang, Xiang
    Wang, Yao
    Yang, Xu
    Wang, Xia
    Fayena-Greenstein, Miryam
    Yehezkel, Hadas Alon
    Langford, Steven
    Zhou, Dong
    Li, Baohua
    Wang, Guoxiu
    Aurbach, Doron
    [J]. NATURE REVIEWS MATERIALS, 2024, 9 (05) : 305 - 320
  • [15] Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries
    Huo, Hanyu
    Chen, Yue
    Li, Ruying
    Zhao, Ning
    Luo, Jing
    da Silva, Joao Gustavo Pereira
    Muecke, Robert
    Kaghazchi, Payam
    Guo, Xiangxin
    Sun, Xueliang
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (01) : 127 - 134
  • [16] Li2CO3: A Critical Issue for Developing Solid Garnet Batteries
    Huo, Hanyu
    Luo, Jing
    Thangadurai, Venkataraman
    Guo, Xiangxin
    Nan, Ce-Wen
    Sun, Xueliang
    [J]. ACS ENERGY LETTERS, 2020, 5 (01) : 252 - 262
  • [17] Solid electrolyte interphases in lithium metal batteries
    Jagger, Ben
    Pasta, Mauro
    [J]. JOULE, 2023, 7 (10) : 2228 - 2244
  • [18] Challenges in speeding up solid-state battery development
    Janek, Juergen
    Zeier, Wolfgang G.
    [J]. NATURE ENERGY, 2023, 8 (03) : 230 - 240
  • [19] 3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries
    Li, Dan
    Chen, Long
    Wang, Tianshi
    Fan, Li-Zhen
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (08) : 7069 - 7078
  • [20] Insights Into the Interfacial Degradation of High-Voltage All-Solid-State Lithium Batteries
    Li, Jiawen
    Ji, Yuchen
    Song, Haoran
    Chen, Shiming
    Ding, Shouxiang
    Zhang, Bingkai
    Yang, Luyi
    Song, Yongli
    Pan, Feng
    [J]. NANO-MICRO LETTERS, 2022, 14 (01)