Hybrid Multiscale Spatial-Spectral Transformer for Hyperspectral Image Classification

被引:6
作者
He, Yan [1 ,2 ]
Tu, Bing [1 ,2 ]
Liu, Bo [1 ,2 ]
Chen, Yunyun [1 ,2 ]
Li, Jun [3 ]
Plaza, Antonio [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Inst Opt & Elect, Jiangsu Key Lab Optoelect Detect Atmosphere & Ocea, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Int Joint Lab Meteorol Photon & Optoelect, Nanjing 210044, Jiangsu, Peoples R China
[3] China Univ Geosci, Fac Comp Sci, Wuhan 430074, Peoples R China
[4] Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI) classification; multiscale self-attention; transformer network; FEATURE-EXTRACTION;
D O I
10.1109/TGRS.2024.3443662
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) classification constitutes a significant foundation for remote sensing analysis. Transformer architecture establishes long-range dependencies with a self-attention mechanism (SA), which exhibits advantages in HSI classification. However, most existing transformer-based methods are inadequate in exploring the multiscale properties of hybrid spatial and spectral information inherent in HSI data. To countermeasure this problem, this work investigates a hybrid multiscale spatial-spectral framework (HMSSF). It innovatively models global dependencies across multiple scales from both spatial and spectral domains, which allows for cooperatively capturing hybrid multiscale spatial and spectral characteristics for HSI classification. Technically, a spatial-spectral token generation (SSTG) module is first designed to generate the spatial tokens and spectral tokens. Then, a multiscale SA (MSSA) is developed to achieve multiscale attention modeling by constructing different dimensional attention heads per attention layer. This mechanism is adaptively integrated into both spatial and spectral branches for hybrid multiscale feature extraction. Furthermore, a spatial-spectral attention aggregation (SSAA) module is introduced to dynamically fuse the multiscale spatial and spectral features to enhance the classification robustness. Experimental results and analysis demonstrate that the proposed method outperforms the state-of-the-art methods on several public HSI datasets.
引用
收藏
页数:18
相关论文
共 55 条
  • [41] A review of deep learning used in the hyperspectral image analysis for agriculture
    Wang, Chunying
    Liu, Baohua
    Liu, Lipeng
    Zhu, Yanjun
    Hou, Jialin
    Liu, Ping
    Li, Xiang
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (07) : 5205 - 5253
  • [42] DBCTNet: Double Branch Convolution-Transformer Network for Hyperspectral Image Classification
    Xu, Rui
    Dong, Xue-Mei
    Li, Weijie
    Peng, Jiangtao
    Sun, Weiwei
    Xu, Yi
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [43] A Graph-Based Hyperspectral Change Detection Framework Using Difference Augmentation and Progressive Reconstruction With Limited Labels
    Yang, Bin
    Cheng, Xinwei
    Chen, Wei
    Ye, Xin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [44] Learning and Transferring Deep Joint Spectral-Spatial Features for Hyperspectral Classification
    Yang, Jingxiang
    Zhao, Yong-Qiang
    Chan, Jonathan Cheung-Wai
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08): : 4729 - 4742
  • [45] Hyperspectral Image Transformer Classification Networks
    Yang, Xiaofei
    Cao, Weijia
    Lu, Yao
    Zhou, Yicong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [46] Yang Y., 2023, IEEE Trans. Geosci. Remote Sens., V61
  • [47] Spectral-Spatial Shared Linear Regression for Hyperspectral Image Classification
    Yuan, Haoliang
    Tang, Yuan Yan
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (04) : 934 - 945
  • [48] Towards Efficient Use of Multi-Scale Features in Transformer-Based Object Detectors
    Zhang, Gongjie
    Luo, Zhipeng
    Tian, Zichen
    Zhang, Jingyi
    Zhang, Xiaoqin
    Lu, Shijian
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 6206 - 6216
  • [49] Convolution Transformer Mixer for Hyperspectral Image Classification
    Zhang, Junjie
    Meng, Zhe
    Zhao, Feng
    Liu, Hanqiang
    Chang, Zhenhui
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [50] Hyperspectral and LiDAR Data Classification Based on Structural Optimization Transmission
    Zhang, Mengmeng
    Li, Wei
    Zhang, Yuxiang
    Tao, Ran
    Du, Qian
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (05) : 3153 - 3164