On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique

被引:0
作者
Zenteno-Hernandez, Jose Alex [1 ,2 ]
Comeron, Adolfo [2 ]
Dios, Federico [2 ]
Rodriguez-Gomez, Alejandro [2 ]
Munoz-Porcar, Constantino [2 ]
Sicard, Michael [3 ]
Franco, Noemi [4 ]
Behrendt, Andreas [5 ]
Di Girolamo, Paolo [4 ]
机构
[1] Inst Nacl Astrofis Opt & Elect INAOE, Puebla 72840, Mexico
[2] Univ Politecn Catalunya UPC, Dept Signal Theory & Commun, CommSensLab, Barcelona 08034, Spain
[3] Univ Reunion, Lab Atmosphere & Cyclones LACy, F-97744 St Denis, France
[4] Univ Basilicata, Scuola Ingn, I-85100 Potenza, Italy
[5] Univ Hohenheim, Inst Phys & Meteorol, D-70599 Stuttgart, Germany
关键词
LIDAR;
D O I
10.5194/amt-17-4687-2024
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We assess the temperature stability requirements of unseeded Nd:YAG lasers in lidar systems for atmospheric temperature profiling through the rotational Raman technique. Taking as a reference a system using a seeded laser assumed to emit pulses of negligible spectral width and free of wavelength drifts, we estimate first the effect of the pulse spectral widening of the unseeded laser on the output of the interference filters, and then we derive the limits of the allowable wavelength drift for a given bias in the temperature measurement that would add to the noise-induced uncertainty. Finally, using spectroscopic data, we relate the allowable wavelength drift to allowable temperature variations in the YAG rod. We find that, in order to keep the bias affecting atmospheric temperature measurements smaller than 1 K, the Nd:YAG rod temperature should also be kept within a variation range of 1 K.
引用
收藏
页码:4687 / 4694
页数:8
相关论文
共 26 条
  • [1] MEASUREMENT OF DISPERSION IN POLARIZABILITY ANISOTROPIES
    ALMS, GR
    BURNHAM, AK
    FLYGARE, WH
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1975, 63 (08) : 3321 - 3326
  • [2] Diode-pumped high-efficiency high-brightness Q-switched ND:YAG slab laser
    Armandillo, E
    Norrie, C
    Cosentino, A
    Laporta, P
    Wazen, P
    Maine, P
    [J]. OPTICS LETTERS, 1997, 22 (15) : 1168 - 1170
  • [3] ATMOSPHERIC-TEMPERATURE MEASUREMENTS USING A PURE ROTATIONAL RAMAN LIDAR
    ARSHINOV, YF
    BOBROVNIKOV, SM
    ZUEV, VE
    MITEV, VM
    [J]. APPLIED OPTICS, 1983, 22 (19): : 2984 - 2990
  • [4] Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator
    Behrendt, A
    Reichardt, J
    [J]. APPLIED OPTICS, 2000, 39 (09) : 1372 - 1378
  • [5] Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere
    Behrendt, A
    Nakamura, T
    Tsuda, T
    [J]. APPLIED OPTICS, 2004, 43 (14) : 2930 - 2939
  • [6] Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient
    Behrendt, A
    Nakamura, T
    Onishi, M
    Baumgart, R
    Tsuda, T
    [J]. APPLIED OPTICS, 2002, 41 (36) : 7657 - 7666
  • [7] Buldakov M. A., 1016, Spectrochim. Acta A Mol. Biomol. Spectrosc., V52, P10
  • [8] Cooney J., 1972, Journal of Applied Meteorology, V11, P108, DOI 10.1175/1520-0450(1972)011<0108:MOATPB>2.0.CO
  • [9] 2
  • [10] Czajkowski A., 2017, ALLUXA White Paper