Enhancing Legal Text Entailment with Prompt-Based ChatGPT: An Empirical Study

被引:0
作者
Nguyen, Chau [1 ]
Nguyen, Le-Minh [1 ]
机构
[1] Japan Adv Inst Sci & Technol, Nomi, Ishikawa, Japan
来源
NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE, JSAI-ISAI 2023 INTERNATIONAL WORKSHOPS- JURISIN, SCIDOCA, EMSEMI AND AI-BIZ 2023 | 2024年 / 14644卷
关键词
Legal text entailment; ChatGPT; Large language model;
D O I
10.1007/978-3-031-60511-6_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research paper focuses on the task of legal text entailment, which involves determining whether a given statement logically follows from the facts stated in a legal text. In this paper, we perform experiments with ChatGPT, a large language model developed by OpenAI, for the task of legal text entailment. Among various prompt settings, we find that by using appropriate prompts while asking ChatGPT to output step-by-step reasoning, ChatGPT outperforms previous approaches by a large margin in the COLIEE 2022 dataset, achieving an improvement of up to 10.09% absolute. We also conduct an extensive analysis of how the model makes incorrect predictions, providing insights for potential improvements in future work. This research demonstrates the potential of using state-of-the-art natural language processing models, such as ChatGPT, to address complex legal tasks and advance the field of automated legal text entailment.
引用
收藏
页码:184 / 196
页数:13
相关论文
共 23 条
  • [1] Chen JH, 2023, Arxiv, DOI [arXiv:2304.03262, 10.48550/arXiv.2304.03262]
  • [2] Christiano PF, 2017, ADV NEUR IN, V30
  • [3] SUPPORT-VECTOR NETWORKS
    CORTES, C
    VAPNIK, V
    [J]. MACHINE LEARNING, 1995, 20 (03) : 273 - 297
  • [4] deeplearning.ai, ChatGPT prompt engineering for developers
  • [5] Devlin J, 2019, Arxiv, DOI [arXiv:1810.04805, DOI 10.48550/ARXIV.1810.04805]
  • [6] Fujita M., 2021, P COLIEE WORKSH ICAI
  • [7] Legal Textual Entailment Using Ensemble of Rule-Based and BERT-Based Method with Data Augmentation by Related Article Generation
    Fujita, Masaki
    Onaga, Takaaki
    Ueyama, Ayaka
    Kano, Yoshinobu
    [J]. NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE, JSAI-ISAI 2022 WORKSHOP, JURISIN 2022, JSAI 2022, 2023, 13859 : 138 - 153
  • [8] Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [9] Kim M., 2021, P COLIEE WORKSH ICAI
  • [10] COLIEE 2022 Summary: Methods for Legal Document Retrieval and Entailment
    Kim, Mi-Young
    Rabelo, Juliano
    Goebel, Randy
    Yoshioka, Masaharu
    Kano, Yoshinobu
    Satoh, Ken
    [J]. NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE, JSAI-ISAI 2022 WORKSHOP, JURISIN 2022, JSAI 2022, 2023, 13859 : 51 - 67