Machine-learned coarse-grained potentials for particles with anisotropic shapes and interactions

被引:4
作者
Campos-Villalobos, Gerardo [1 ]
Subert, Rodolfo [1 ]
Giunta, Giuliana [2 ]
Dijkstra, Marjolein [1 ,3 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, Soft Condensed Matter & Biophys, Princetonpl 5, NL-3584 CC Utrecht, Netherlands
[2] BASF SE, Carl Bosch Str 38, D-67056 Ludwigshafen Am Rhein, Germany
[3] Hiroshima Univ, Int Inst Sustainabil Knotted Chiral Meta Matter SK, 2-313 Kagamiyama, Higashihiroshima, Hiroshima 7398527, Japan
基金
欧洲研究理事会;
关键词
INVERSE PATCHY COLLOIDS; COMPUTER-SIMULATION; LIQUID-CRYSTALS; PHASE-BEHAVIOR; MODEL; NANOPARTICLES; NANOCRYSTALS; SCATTERING; MOLECULES; DISTANCE;
D O I
10.1038/s41524-024-01405-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Computational investigations of biological and soft-matter systems governed by strongly anisotropic interactions typically require resource-demanding methods such as atomistic simulations. However, these techniques frequently prove to be prohibitively expensive for accessing the long-time and large-length scales inherent to such systems. Conversely, coarse-grained models offer a computationally efficient alternative. Nonetheless, models of this type have seldom been developed to accurately represent anisotropic or directional interactions. In this work, we introduce a straightforward bottom-up, data-driven approach for constructing single-site coarse-grained potentials suitable for particles with arbitrary shapes and highly directional interactions. Our method for constructing these coarse-grained potentials relies on particle-centered descriptors of local structure that effectively encode dependencies on rotational degrees of freedom in the interactions. By using these descriptors as regressors in a linear model and employing a simple feature selection scheme, we construct single-site coarse-grained potentials for particles with anisotropic interactions, including surface-patterned particles and colloidal superballs in the presence of non-adsorbing polymers. We validate the efficacy of our models by accurately capturing the intricacies of the potential-energy surfaces from the underlying fine-grained models. Additionally, we demonstrate that this simple approach can accurately represent the contact function (shape) of non-spherical particles, which may be leveraged to construct continuous potentials suitable for large-scale simulations.
引用
收藏
页数:13
相关论文
共 84 条
[1]   Shape-controlled synthesis of colloidal platinum nanoparticles [J].
Ahmadi, TS ;
Wang, ZL ;
Green, TC ;
Henglein, A ;
ElSayed, MA .
SCIENCE, 1996, 272 (5270) :1924-1926
[2]  
Allen MP, 1993, ADV CHEM PHYS, V86, P1, DOI [DOI 10.1002/9780470141458.CH1, 10.1002/9780470141458, DOI 10.1002/9780470141458]
[3]   Molecular dynamics simulations of anisotropic particles accelerated by neural-net predicted interactions [J].
Argun, B. Rusen ;
Fu, Yu ;
Statt, Antonia .
JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (24)
[4]   INTERACTION BETWEEN PARTICLES SUSPENDED IN SOLUTIONS OF MACROMOLECULES [J].
ASAKURA, S ;
OOSAWA, F .
JOURNAL OF POLYMER SCIENCE, 1958, 33 (126) :183-192
[5]   Nanocrystal Assemblies: Current Advances and Open Problems [J].
Bassani, Carlos L. ;
van Anders, Greg ;
Banin, Uri ;
Baranov, Dmitry ;
Chen, Qian ;
Dijkstra, Marjolein ;
Dimitriyev, Michael S. ;
Efrati, Efi ;
Faraudo, Jordi ;
Gang, Oleg ;
Gaston, Nicola ;
Golestanian, Ramin ;
Guerrero-Garcia, G. Ivan ;
Gruenwald, Michael ;
Haji-Akbari, Amir ;
Ibanez, Maria ;
Karg, Matthias ;
Kraus, Tobias ;
Lee, Byeongdu ;
Van Lehn, Reid C. ;
Macfarlane, Robert J. ;
Mognetti, Bortolo M. ;
Nikoubashman, Arash ;
Osat, Saeed ;
Prezhdo, Oleg V. ;
Rotskoff, Grant M. ;
Saiz, Leonor ;
Shi, An-Chang ;
Skrabalak, Sara ;
Smalyukh, Ivan I. ;
Tagliazucchi, Mario ;
Talapin, Dmitri V. ;
Tkachenko, Alexei V. ;
Tretiak, Sergei ;
Vaknin, David ;
Widmer-Cooper, Asaph ;
Wong, Gerard C. L. ;
Ye, Xingchen ;
Zhou, Shan ;
Rabani, Eran ;
Engel, Michael ;
Travesset, Alex .
ACS NANO, 2024, 18 (23) :14791-14840
[6]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[7]   Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)
[8]   A GENERALIZED GAY-BERNE INTERMOLECULAR POTENTIAL FOR BIAXIAL PARTICLES [J].
BERARDI, R ;
FAVA, C ;
ZANNONI, C .
CHEMICAL PHYSICS LETTERS, 1995, 236 (4-5) :462-468
[9]  
Berardi R, 2001, CHEMPHYSCHEM, V2, P443, DOI 10.1002/1439-7641(20010716)2:7<443::AID-CPHC443>3.0.CO
[10]  
2-J