DeepQCD: An end-to-end deep learning approach to quickest change detection

被引:0
|
作者
Kurt, Mehmet Necip [1 ]
Zheng, Jiaohao [2 ]
Yilmaz, Yasin [3 ]
Wang, Xiaodong [1 ]
机构
[1] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[3] Univ S Florida, Dept Elect Engn, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
Quickest change detection; Deep learning; Temporal correlation; Transient change; Internet of things; Surveillance videos; SEQUENTIAL CHANGE DETECTION; CHANGE-POINT DETECTION; ANOMALY DETECTION; CYBER-ATTACKS; MODEL;
D O I
10.1016/j.jfranklin.2024.107199
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper aims to generalize the quickest change detection (QCD) framework via a data- driven approach. To this end, a generic neural network architecture is proposed for the QCD task, composed of feature transformation, recurrent, and dense layers. The neural network is trained end-to-end to learn the change detection rule directly from data without needing the knowledge of probabilistic data models. Specifically, the feature transformation layers can perform a broad range of operations including feature extraction, scaling, and normalization. The recurrent layers keep an internal state summarizing the time-series data seen so far and update the state as new information comes in. Finally, the dense layers map the internal state into a decision statistic, defined as the posterior probability that a change has taken place. Comparisons with the existing model-based QCD algorithms demonstrate the power of the proposed data-driven approach, called DeepQCD, under several scenarios including transient changes and temporally correlated data streams. Experiments with real-world data illustrate superior performance of DeepQCD compared to state-of-the-art algorithms in real-time anomaly detection over surveillance videos and real-time attack detection over Internet of Things (IoT) networks.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Early Failure Detection of Deep End-to-End Control Policy by Reinforcement Learning
    Lee, Keuntaek
    Saigol, Kamil
    Theodorou, Evangelos A.
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 8543 - 8549
  • [32] Efficient Brain Tumor Detection with Lightweight End-to-End Deep Learning Model
    Hammad, Mohamed
    ElAffendi, Mohammed
    Ateya, Abdelhamied A. A.
    Abd El-Latif, Ahmed A. A.
    CANCERS, 2023, 15 (10)
  • [33] A Novel End-to-End Deep Learning Framework for Chip Packaging Defect Detection
    Zhou, Siyi
    Yao, Shunhua
    Shen, Tao
    Wang, Qingwang
    SENSORS, 2024, 24 (17)
  • [34] End-to-end malware detection for android IoT devices using deep learning
    Ren, Zhongru
    Wu, Haomin
    Ning, Qian
    Hussain, Iftikhar
    Chen, Bingcai
    AD HOC NETWORKS, 2020, 101
  • [35] End-to-End Deep Learning Method for Detection of Invasive Parkinson's Disease
    Mahmood, Awais
    Khan, Muhammad Mehroz
    Imran, Muhammad
    Alhajlah, Omar
    Dhahri, Habib
    Karamat, Tehmina
    DIAGNOSTICS, 2023, 13 (06)
  • [36] Fast End-to-End Deep Learning Identity Document Detection, Classification and Cropping
    Chiron, Guillaume
    Arrestier, Florian
    Awal, Ahmad Montaser
    DOCUMENT ANALYSIS AND RECOGNITION, ICDAR 2021, PT IV, 2021, 12824 : 333 - 347
  • [37] Drug-Target Interaction Prediction: End-to-End Deep Learning Approach
    Monteiro, Nelson R. C.
    Ribeiro, Bernardete
    Arrais, Joel P.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (06) : 2364 - 2374
  • [38] Deep Learning End-to-End Approach for the Prediction of Tinnitus based on EEG Data
    Allgaier, Johannes
    Neff, Patrick
    Schlee, Winfried
    Schoisswohl, Stefan
    Pryss, Ruediger
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 816 - 819
  • [39] End-to-end analysis modeling of vibrational spectroscopy based on deep learning approach
    Wang, Xin
    Yu, Long
    Tian, Shengwei
    Lv, Xiaoyi
    Meng, Xin
    Zhang, Wendong
    JOURNAL OF CHEMOMETRICS, 2020, 34 (10)
  • [40] End-to-end CNN + LSTM deep learning approach for bearing fault diagnosis
    Amin Khorram
    Mohammad Khalooei
    Mansoor Rezghi
    Applied Intelligence, 2021, 51 : 736 - 751