A consensus-based approach to improve the accuracy of machine learning models

被引:0
|
作者
Karamdel, Hasti [1 ]
Ashtiani, Mehrdad [1 ]
Mehditabar, Mohammad Javad [1 ]
Bakhshi, Fatemeh [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Comp Engn, Hengam St,Resalat Sq, Tehran 1684613114, Iran
关键词
Consensus reaching process; Consensus algorithms; Group decision-making; Machine learning;
D O I
10.1007/s12065-024-00982-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Consensus algorithms simplify decision-making and conflict-management processes. On the other hand, machine learning is one of the best methods for data management and inference. The main objective of this paper is to introduce a method that can combine these two fields to enhance the accuracy of machine-learning models. In the proposed approach, the final results obtained from the training phase of the machine-learning models converge using two consensus layers. In the first layer, models pull their values closer to each other, and we will rank them based on their proximity to the actual final value. Thus, the models with more positive impacts on other models will gain higher coefficients to attract other models more in the next iterations, and models with negative impacts will lose their effects by reducing their coefficients. Three deduction approaches to obtain the final value have been considered in the second layer. The hard consensus method uses majority voting, the soft consensus method assigns the same weights to each model, and the consensus with the trust factor method sets weights according to the model's closeness to the actual value. This study combined four machine learning models for the regression task and evaluated our approach on three Kaggle datasets based on their R2 score and statistical test. Moreover, we compared our model with an ensemble method of stacking regression that our model outperformed. We have also demonstrated the models' effects on each other and how they approach the actual final value. Lastly, the results show that using consensus methods along with machine-learning models can potentially improve the accuracy of machine-learning models. Specifically, our hard consensus method could outperform other models in most cases, while soft consensus and trust factors can achieve better performance in fewer cases.
引用
收藏
页码:4257 / 4278
页数:22
相关论文
共 50 条
  • [31] Fingerprint-Based Localization Approach for WSN Using Machine Learning Models
    Alhmiedat, Tareq
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [32] An efficient optimization approach for designing machine learning models based on genetic algorithm
    Hamdia, Khader M.
    Zhuang, Xiaoying
    Rabczuk, Timon
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (06) : 1923 - 1933
  • [33] Applying Genetic Programming to Improve Interpretability in Machine Learning Models
    Ferreira, Leonardo Augusto
    Guimaraes, Frederico Gadelha
    Silva, Rodrigo
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [34] Improving the accuracy of machine-learning models with data from machine test repetitions
    Bustillo, Andres
    Reis, Roberto
    Machado, Alisson R.
    Pimenov, Danil Yu.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (01) : 203 - 221
  • [35] Improving the accuracy of machine-learning models with data from machine test repetitions
    Andres Bustillo
    Roberto Reis
    Alisson R. Machado
    Danil Yu. Pimenov
    Journal of Intelligent Manufacturing, 2022, 33 : 203 - 221
  • [36] Machine Learning Consensus Clustering Approach for Hospitalized Patients with Phosphate Derangements
    Thongprayoon, Charat
    Dumancas, Carissa Y.
    Nissaisorakarn, Voravech
    Keddis, Mira T.
    Kattah, Andrea G.
    Pattharanitima, Pattharawin
    Petnak, Tananchai
    Vallabhajosyula, Saraschandra
    Garovic, Vesna D.
    Mao, Michael A.
    Dillon, John J.
    Erickson, Stephen B.
    Cheungpasitporn, Wisit
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (19)
  • [37] Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs
    Wang, Xue
    Shi, Shaolei
    Wang, Guijiang
    Luo, Wenxue
    Wei, Xia
    Qiu, Ao
    Luo, Fei
    Ding, Xiangdong
    JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY, 2022, 13 (01)
  • [38] Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs
    Xue Wang
    Shaolei Shi
    Guijiang Wang
    Wenxue Luo
    Xia Wei
    Ao Qiu
    Fei Luo
    Xiangdong Ding
    Journal of Animal Science and Biotechnology, 13
  • [39] High-Accuracy Wireless Traffic Prediction: A GP-Based Machine Learning Approach
    Xu, Yue
    Xu, Wenjun
    Yin, Feng
    Lin, Jiaru
    Cui, Shuguang
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [40] A Machine Learning Approach to Improve the Detection of CI Skip Commits
    Abdalkareem, Rabe
    Mujahid, Suhaib
    Shihab, Emad
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2021, 47 (12) : 2740 - 2754