Study of the co-pyrolysis behavior and bio-oil characterization of walnut shell and polyethylene by thermogravimetric analyzer and bubbling fluidized bed

被引:1
|
作者
Yang, Yu [1 ,2 ]
Long, Daiyang [1 ]
Jiang, Yican [1 ]
Tang, Pingping [1 ]
Zhang, Shengji [1 ]
Yu, Hao [1 ]
机构
[1] Chongqing Univ Sci & Technol, Coll Mech & Power Engn, Chongqing 401331, Peoples R China
[2] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Walnut shell; Polyethylene; Co-pyrolysis behaviors; Bio-oil characteristics; Bubbling fluidized bed; BIOMASS; KINETICS; SHALE; TEMPERATURE; MICROALGAE; REACTOR; SLUDGE; CARBON; GAS; MSW;
D O I
10.1016/j.joei.2024.101813
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the present work, co-pyrolysis experiments of walnut shell (WS), polyethylene (PE) and their blends were performed in the thermogravimetric analyzer and lab-scale bubbling fluidized bed reactor, to clarify co-pyrolysis behaviors, synergy interactions and pyrolysis oil properties. Besides, the HZSM-5 zeolite was used as the catalyst and its catalytic characteristics were studied. Results indicated that as PE mass ratio rose from 0 to 100 %, the initial temperature monotonically increased from 265.4 to 417.3 degrees C, while its terminal temperature progressively decreased from 668.3 to 527.5 degrees C, suggesting that the addition of PE was able to accelerate the pyrolysis of samples. The co-pyrolysis of blends was distinguished into three stages, with a negative interaction observed in the first stage and positive interactions found in second and third stages. Besides, in the bubbling fluidized bed experiments, the liquid phase product yield first elevated and then reduced with rising temperature, and a high temperature promoted the degradation of oxygen-containing compounds and enhanced aromatics generation. The synergistic interaction in the co-pyrolysis of WS and PE declined the liquid phase product yield while elevating the gas phase product yield. On the other hand, blending with PE facilitated the generation of alkanes and olefins, while inhibiting the contents of oxygen-containing components and aromatics, and simultaneously, the heavy oil fraction was increased. Finally, the carbon deposited on the surface of catalysts was amorphous carbons, and could be removed by oxidation process, whereas its catalytic properties progressively declined with rising cycle number, leading to a downtrend of aromatics and olefins and an opposite trend for oxygen-containing components.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Comprehensive study on pyrolysis and co-pyrolysis of walnut shell and bio-oil distillation residue
    Zhu, Xiefei
    Zhang, Yiming
    Ding, Haozhi
    Huang, Lingrui
    Zhu, Xifeng
    ENERGY CONVERSION AND MANAGEMENT, 2018, 168 : 178 - 187
  • [2] Co-Pyrolysis of walnut shell and waste tire with a focus on bio-oil yield quantity and quality
    Hussein, Abdisalam Moalin
    Kar, Yakup
    Kok, Onur Eser
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 112
  • [3] Studies of fast co-pyrolysis of oil shale and wood in a bubbling fluidized bed
    Chen, Bin
    Han, Xiangxin
    Tong, Jianhui
    Mu, Mao
    Jiang, Xiumin
    Wang, Sha
    Shen, Jun
    Ye, Xiao
    ENERGY CONVERSION AND MANAGEMENT, 2020, 205
  • [4] Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene
    Onal, Eylem
    Uzun, Basak Burcu
    Putun, Ayse Eren
    ENERGY CONVERSION AND MANAGEMENT, 2014, 78 : 704 - 710
  • [5] The valorization of co-pyrolysis bio-oil derived from bio-oil distillation residue and walnut shell via coupling fractional condensation and lyophilization
    Diao, Rui
    Wang, Chu
    Luo, Zejun
    Zhu, Xifeng
    JOURNAL OF CLEANER PRODUCTION, 2021, 294
  • [6] Characterization of Zhundong lignite and biomass co-pyrolysis in a thermogravimetric analyzer and a fixed bed reactor
    Guo, Feiqiang
    Li, Xiaolei
    Wang, Yan
    Liu, Yuan
    Li, Tiantao
    Guo, Chenglong
    ENERGY, 2017, 141 : 2154 - 2163
  • [7] Combining torrefaction pretreatment and co-pyrolysis to upgrade biochar derived from bio-oil distillation residue and walnut shell
    Zhu, Xiefei
    Luo, Zejun
    Diao, Rui
    Zhu, Xifeng
    ENERGY CONVERSION AND MANAGEMENT, 2019, 199
  • [8] Fast pyrolysis of pitch pine biomass in a bubbling fluidized-bed reactor for bio-oil production
    Tran, Quoc Khanh
    Le, Manh Linh
    Ly, Hoang Vu
    Woo, Hee Chul
    Kim, Jinsoo
    Kim, Seung-Soo
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2021, 98 : 168 - 179
  • [9] Fast pyrolysis of macroalga Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production
    Hoang Vu Ly
    Kim, Seung-Soo
    Woo, Hee Chul
    Choi, Jae Hyung
    Suh, Dong Jin
    Kim, Jinsoo
    ENERGY, 2015, 93 : 1436 - 1446
  • [10] Co-pyrolysis of Juliflora biomass with low-density polyethylene for bio-oil synthesis
    Somasundaram, Murugavelh
    Prasad, Midhun K.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2021, 43 (09) : 1134 - 1149