共 50 条
Study of the co-pyrolysis behavior and bio-oil characterization of walnut shell and polyethylene by thermogravimetric analyzer and bubbling fluidized bed
被引:1
|作者:
Yang, Yu
[1
,2
]
Long, Daiyang
[1
]
Jiang, Yican
[1
]
Tang, Pingping
[1
]
Zhang, Shengji
[1
]
Yu, Hao
[1
]
机构:
[1] Chongqing Univ Sci & Technol, Coll Mech & Power Engn, Chongqing 401331, Peoples R China
[2] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
基金:
中国博士后科学基金;
中国国家自然科学基金;
关键词:
Walnut shell;
Polyethylene;
Co-pyrolysis behaviors;
Bio-oil characteristics;
Bubbling fluidized bed;
BIOMASS;
KINETICS;
SHALE;
TEMPERATURE;
MICROALGAE;
REACTOR;
SLUDGE;
CARBON;
GAS;
MSW;
D O I:
10.1016/j.joei.2024.101813
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
In the present work, co-pyrolysis experiments of walnut shell (WS), polyethylene (PE) and their blends were performed in the thermogravimetric analyzer and lab-scale bubbling fluidized bed reactor, to clarify co-pyrolysis behaviors, synergy interactions and pyrolysis oil properties. Besides, the HZSM-5 zeolite was used as the catalyst and its catalytic characteristics were studied. Results indicated that as PE mass ratio rose from 0 to 100 %, the initial temperature monotonically increased from 265.4 to 417.3 degrees C, while its terminal temperature progressively decreased from 668.3 to 527.5 degrees C, suggesting that the addition of PE was able to accelerate the pyrolysis of samples. The co-pyrolysis of blends was distinguished into three stages, with a negative interaction observed in the first stage and positive interactions found in second and third stages. Besides, in the bubbling fluidized bed experiments, the liquid phase product yield first elevated and then reduced with rising temperature, and a high temperature promoted the degradation of oxygen-containing compounds and enhanced aromatics generation. The synergistic interaction in the co-pyrolysis of WS and PE declined the liquid phase product yield while elevating the gas phase product yield. On the other hand, blending with PE facilitated the generation of alkanes and olefins, while inhibiting the contents of oxygen-containing components and aromatics, and simultaneously, the heavy oil fraction was increased. Finally, the carbon deposited on the surface of catalysts was amorphous carbons, and could be removed by oxidation process, whereas its catalytic properties progressively declined with rising cycle number, leading to a downtrend of aromatics and olefins and an opposite trend for oxygen-containing components.
引用
收藏
页数:11
相关论文