The influence of steelmaking processes on the hydrogen embrittlement of a tempered martensitic steel

被引:2
|
作者
Almeida, Laryssa dos S. [1 ]
Marques, Sara Correa [1 ]
dos Santos, Dilson S. [1 ,2 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE, PEMM, UFRJ, Rio De Janeiro, RJ, Brazil
[2] Univ Fed Rio de Janeiro, COPPE, PENT, UFRJ, Rio De Janeiro, RJ, Brazil
关键词
AISI; 4140; Steelmaking routes; Hydrogen embrittlement; Electrochemical hydrogen permeation; Mechanical properties; HIGH-STRENGTH; MECHANICAL-PROPERTIES; ENVIRONMENT EMBRITTLEMENT; NONMETALLIC INCLUSIONS; TENSILE PROPERTIES; MACRO SEGREGATION; DELAYED FRACTURE; PIPELINE STEEL; DIFFUSION; BEHAVIOR;
D O I
10.1016/j.ijhydene.2024.06.251
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High strength low alloy (HSLA) steels with tempered martensite microstructure are widely applied in the offshore industry such as fasteners. The subsea environment conditions are quite favorable for severe hydrogen embrittlement (HE). Their good hardenability influences the achievement of excellent mechanical properties. Three different steelmaking routes such as continuous casting (CC), conventional ingot casting (CIC) and electroslag remelting (ESR) were investigated to verify the influence on the AISI 4140 steel microstructure and the HE susceptibility. Electrochemical hydrogen permeation tests were correlated with the microstructure obtained from each route that presented different levels of segregation bands. The CC process was responsible for the appearance of a high density of non-metallic inclusions (NMIs) like manganese sulfide (MnS) and impurities in segregation regions that increased the HE degree. The ESR route presented the best mechanical behavior due to the lowest reduction in ductility for hydrogenated uniaxial tensile test conditions and, consequently, the highest resistance regarding the HE.
引用
收藏
页码:662 / 673
页数:12
相关论文
共 50 条
  • [21] Effect of Cr and Mo Contents on Hydrogen Embrittlement of Tempered Martensitic Steels
    Kim, Sang-Gyu
    Kim, Jae-Yun
    Sin, Hee-Chang
    Hwang, Byoungchul
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2022, 32 (11): : 466 - 473
  • [22] Response of Hydrogen Desorption and Hydrogen Embrittlement to Precipitation of Nanometer-Sized Copper in Tempered Martensitic Low-Carbon Steel
    Lin, Yu-Chen
    Chen, Delphic
    Chiang, Meng-Hsuan
    Cheng, Guan-Ju
    Lin, Hsin-Chih
    Yen, Hung-Wei
    JOM, 2019, 71 (04) : 1349 - 1356
  • [23] The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels
    Venezuela, Jeffrey
    Zhou, Qingjun
    Liu, Qinglong
    Li, Huixing
    Zhang, Mingxing
    Dargusch, Matthew S.
    Atrens, Andrej
    MATERIALS TODAY COMMUNICATIONS, 2018, 17 : 1 - 14
  • [24] The effect of nanosized (Ti,Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel
    Nagao, Akihide
    Martin, May L.
    Dadfarnia, Mohsen
    Sofronis, Petros
    Robertson, Ian M.
    ACTA MATERIALIA, 2014, 74 : 244 - 254
  • [25] Hydrogen Embrittlement Susceptibility Evaluation of Tempered Martensitic Steels Showing Different Fracture Surface Morphologies
    Ogawa, Kippei
    Matsumoto, Yu
    Suzuki, Hiroshi
    Takai, Kenichi
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2019, 105 (01): : 112 - 121
  • [26] Hydrogen embrittlement of an automotive 1700 MPa martensitic advanced high-strength steel
    Venezuela, Jeffrey
    Lim, Fang Yan
    Liu, Li
    James, Sonia
    Zhou, Qingjun
    Knibbe, Ruth
    Zhang, Mingxing
    Li, Huixing
    Dong, Futao
    Dargusch, Matthew S.
    Atrens, Andrej
    CORROSION SCIENCE, 2020, 171
  • [27] Evaluation for Hydrogen Embrittlement Properties of Tempered Martensitic Steel Sheets Using Several Testing Technique
    Hojo, Tomohiko
    Waki, Hiroyuki
    Nishimura, Fumihito
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2014, 100 (10): : 1306 - 1314
  • [28] Effect of V/Mo ratio on the evolution of carbide precipitates and hydrogen embrittlement of tempered martensitic steel
    Seo, Hyun Joo
    Heo, Yoon-Uk
    Kim, Jae Nam
    Lee, Junmo
    Choi, Sangwoo
    Lee, Chong Soo
    CORROSION SCIENCE, 2020, 176
  • [29] Hydrogen Embrittlement Susceptibility Evaluation of Tempered Martensitic Steels Showing Different Fracture Surface Morphologies
    Ogawa, Kippei
    Matsumoto, Yu
    Suzuki, Hiroshi
    Takai, Kenichi
    ISIJ INTERNATIONAL, 2019, 59 (09) : 1705 - 1714
  • [30] Effect of Strain Rate on Hydrogen Embrittlement Susceptibility of Tempered Martensitic Steel and the Rate-Determining Process
    Sakiyama, Yuji
    Omura, Tomohiko
    Sugita, Kazuki
    Mizuno, Masataka
    Araki, Hideki
    Shirai, Yasuharu
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2021, 107 (11): : 90 - 99