Progress and Challenges in Buffer Layers Between Cathode Materials and Sulfide Solid Electrolytes in All-Solid-State Batteries

被引:3
作者
Byeon, Yun Seong [1 ]
Kim, Dongil [2 ]
Han, Sang A. [2 ]
Kim, Jung Ho [2 ]
Park, Min-Sik [1 ]
机构
[1] Kyung Hee Univ, Integrated Educ Inst Frontier Sci & Technol BK21 4, Dept Adv Mat Engn Informat & Elect, 1732 Deogyeong daero, Yongin 17104, South Korea
[2] Univ Wollongong, Fac Engn & Informat Sci, Inst Superconducting & Elect Mat, Squires Way, N Wollongong, NSW 2500, Australia
来源
ADVANCED ENERGY AND SUSTAINABILITY RESEARCH | 2024年 / 5卷 / 11期
基金
新加坡国家研究基金会;
关键词
all solid-state batteries; cathode; interface; solid electrolyte; space charge layer; LI-ION BATTERIES; INTERFACE STABILITY; OXIDE CATHODE; ELECTROCHEMICAL PROPERTIES; SURFACE MODIFICATION; ARGYRODITE LI6PS5CL; LITHIUM BATTERIES; LICOO2; CONDUCTIVITY; PERFORMANCE;
D O I
10.1002/aesr.202400135
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
All-solid-state batteries (ASSBs), configured with solid electrolytes, have received considerable attention as a future energy solution across diverse sectors of modern society. Unlike conventional liquid electrolytes in particular, sulfide solid electrolytes have various advantages, such as high ionic conductivity (>10(-3) S cm(-1)), good ductile properties, and thermal stability. Despite these advantages, the practical application of sulfide solid electrolytes in ASSBs is still limited due to their interfacial instability with commercial cathode materials. Unfortunately, the spontaneous formation of a space charge layer (SCL) at the interface between the cathode material and the solid electrolyte leads to heightened interfacial resistance, obstructing Li+ transport. To address this issue, proper interfacial engineering is still required to facilitate smooth Li+ migration across the interfaces. In this respect, various functional materials have been under exploration as buffer layers, which are intended to suppress the formation of the SCL at these interfaces. Herein, focus is given on the critical significance of these buffer layers between cathode materials and sulfide solid electrolytes in the development of ASSBs. Considering the present limitations, future research directions for next-generation ASSBs are discussed. These insights are poised to offer valuable guidance for the strategic design and development of highly reliable ASSBs.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Interfacial challenges in all-solid-state lithium batteries
    Huang, Yonglin
    Shao, Bowen
    Han, Fudong
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 33
  • [32] Enhancement of the rate capabilities for all-solid-state batteries through the surface oxidation of sulfide solid electrolytes
    Sasaki, Izuru
    Honda, Kazuyoshi
    Asano, Tetsuya
    Ito, Yusuke
    Komori, Tomoyuki
    Hibino, Junichi
    SOLID STATE IONICS, 2020, 347
  • [33] Preparation, design and interfacial modification of sulfide solid electrolytes for all-solid-state lithium metal batteries
    Li, Jianwei
    Li, Yuanyuan
    Wang, Yuxiao
    Wang, Xiaojun
    Wang, Peng
    Ci, Lijie
    Liu, Zhiming
    ENERGY STORAGE MATERIALS, 2025, 74
  • [34] Mechanical properties of sulfide glasses in all-solid-state batteries
    Kato, Atsutaka
    Nose, Masashi
    Yamamoto, Mirai
    Sakuda, Atsushi
    Hayashi, Akitoshi
    Tatsumisago, Masahiro
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2018, 126 (09) : 719 - 727
  • [35] Solvent-engineered synthesis of sulfide solid electrolytes for high performance all-solid-state batteries
    Choi, Ik-Hyeon
    Kim, Eunji
    Jo, Yung-Soo
    Hong, Jeong-Won
    Sung, Junghwan
    Seo, Jeongsuk
    Kim, Byung Gon
    Park, Jun -ho
    Lee, Yoo-Jin
    Ha, Yoon-Cheol
    Kim, Doohun
    Lee, Jin Hong
    Park, Jun -Woo
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 121 : 107 - 113
  • [36] Research Progress of Key Materials for All-Solid-State Lithium Batteries
    Chen L.
    Chi S.
    Dong Y.
    Li D.
    Zhang B.
    Fan L.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2018, 46 (01): : 21 - 34
  • [37] Challenges and opportunities of practical sulfide-based all-solid-state batteries
    Ren, Dongsheng
    Lu, Languang
    Hua, Rui
    Zhu, Gaolong
    Liu, Xiang
    Mao, Yuqiong
    Rui, Xinyu
    Wang, Shan
    Zhao, Bosheng
    Cui, Hao
    Yang, Min
    Shen, Haorui
    Zhao, Chen-Zi
    Wang, Li
    He, Xiangming
    Liu, Saiyue
    Hou, Yukun
    Tan, Tiening
    Wang, Pengbo
    Nitta, Yoshiaki
    Ouyang, Minggao
    ETRANSPORTATION, 2023, 18
  • [38] Interfacial Challenges of Halide-Based All-Solid-State Batteries
    Tan, Yuan
    Beltran, Matthew
    Ke, Jiaqi
    Zhang, Jiayi
    Choi, Junghyun
    Zhou, Yue
    Cho, Kyeongjae
    Lee, Dongsoo
    Su, Laisuo
    ADVANCED ENERGY MATERIALS, 2024,
  • [39] Challenges and Prospects of All-Solid-State Electrodes for Solid-State Lithium Batteries
    Dong, Shaowen
    Sheng, Li
    Wang, Li
    Liang, Jie
    Zhang, Hao
    Chen, Zonghai
    Xu, Hong
    He, Xiangming
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (49)
  • [40] Coating materials and processes for cathodes in sulfide-based all solid-state batteries
    Morchhale, Ayush
    Tang, Zhenghuan
    Yu, Chanyeop
    Farahati, Rashid
    Kim, Jung-Hyun
    CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 39