Progress and Challenges in Buffer Layers Between Cathode Materials and Sulfide Solid Electrolytes in All-Solid-State Batteries

被引:3
|
作者
Byeon, Yun Seong [1 ]
Kim, Dongil [2 ]
Han, Sang A. [2 ]
Kim, Jung Ho [2 ]
Park, Min-Sik [1 ]
机构
[1] Kyung Hee Univ, Integrated Educ Inst Frontier Sci & Technol BK21 4, Dept Adv Mat Engn Informat & Elect, 1732 Deogyeong daero, Yongin 17104, South Korea
[2] Univ Wollongong, Fac Engn & Informat Sci, Inst Superconducting & Elect Mat, Squires Way, N Wollongong, NSW 2500, Australia
来源
ADVANCED ENERGY AND SUSTAINABILITY RESEARCH | 2024年 / 5卷 / 11期
基金
新加坡国家研究基金会;
关键词
all solid-state batteries; cathode; interface; solid electrolyte; space charge layer; LI-ION BATTERIES; INTERFACE STABILITY; OXIDE CATHODE; ELECTROCHEMICAL PROPERTIES; SURFACE MODIFICATION; ARGYRODITE LI6PS5CL; LITHIUM BATTERIES; LICOO2; CONDUCTIVITY; PERFORMANCE;
D O I
10.1002/aesr.202400135
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
All-solid-state batteries (ASSBs), configured with solid electrolytes, have received considerable attention as a future energy solution across diverse sectors of modern society. Unlike conventional liquid electrolytes in particular, sulfide solid electrolytes have various advantages, such as high ionic conductivity (>10(-3) S cm(-1)), good ductile properties, and thermal stability. Despite these advantages, the practical application of sulfide solid electrolytes in ASSBs is still limited due to their interfacial instability with commercial cathode materials. Unfortunately, the spontaneous formation of a space charge layer (SCL) at the interface between the cathode material and the solid electrolyte leads to heightened interfacial resistance, obstructing Li+ transport. To address this issue, proper interfacial engineering is still required to facilitate smooth Li+ migration across the interfaces. In this respect, various functional materials have been under exploration as buffer layers, which are intended to suppress the formation of the SCL at these interfaces. Herein, focus is given on the critical significance of these buffer layers between cathode materials and sulfide solid electrolytes in the development of ASSBs. Considering the present limitations, future research directions for next-generation ASSBs are discussed. These insights are poised to offer valuable guidance for the strategic design and development of highly reliable ASSBs.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries
    Liu, Li
    Zhang, Dechao
    Xu, Xijun
    Liu, Zhengbo
    Liu, Jun
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2021, 37 (02) : 210 - 231
  • [22] Recent Progress in Quasi/All-Solid-State Electrolytes for Lithium-Sulfur Batteries
    Yang, Shichun
    Zhang, Zhengjie
    Lin, Jiayuan
    Zhang, Lisheng
    Wang, Lijing
    Chen, Siyan
    Zhang, Cheng
    Liu, Xinhua
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [23] Research Progress on Interfaces of All-Solid-State Batteries
    Wang, Han
    An, Hanwen
    Shan, Hongmei
    Zhao, Lei
    Wang, Jiajun
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (11)
  • [24] Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries
    Yu, Qingjiang
    Jiang, Kecheng
    Yu, Cuiling
    Chen, Xianjin
    Zhang, Chuanjian
    Yao, Yi
    Jiang, Bin
    Long, Huijin
    CHINESE CHEMICAL LETTERS, 2021, 32 (09) : 2659 - 2678
  • [25] Analysis of Interfacial Effects in All-Solid-State Batteries with Thiophosphate Solid Electrolytes
    Neumann, Anton
    Randau, Simon
    Becker-Steinberger, Katharina
    Danner, Timo
    Hein, Simon
    Ning, Ziyang
    Marrow, James
    Richter, Felix H.
    Janek, Juergen
    Latz, Arnulf
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (08) : 9277 - 9291
  • [26] Toward Practical All-solid-state Batteries with Sulfide Electrolyte: A Review
    Yuan, Hong
    Liu, Jia
    Lu, Yang
    Zhao, Chenzi
    Cheng, Xinbing
    Nan, Haoxiong
    Liu, Quanbing
    Huang, Jiaqi
    Zhang, Qiang
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (03) : 377 - 385
  • [27] Sulfide/Polymer Composite Solid-State Electrolytes for All-Solid-State Lithium Batteries
    Liu, Sijie
    Zhou, Le
    Zhong, Tingjun
    Wu, Xin
    Neyts, Kristiaan
    ADVANCED ENERGY MATERIALS, 2024,
  • [28] Chalcogenide Electrolytes for All-Solid-State Sodium Ion Batteries
    Chen, Guanghai
    Bai, Ying
    Gao, Yongsheng
    Wu, Feng
    Wu, Chuan
    ACTA PHYSICO-CHIMICA SINICA, 2020, 36 (05)
  • [29] High-power all-solid-state batteries using sulfide superionic conductors
    Kato, Yuki
    Hori, Satoshi
    Saito, Toshiya
    Suzuki, Kota
    Hirayama, Masaaki
    Mitsui, Akio
    Yonemura, Masao
    Iba, Hideki
    Kanno, Ryoji
    NATURE ENERGY, 2016, 1
  • [30] Interfacial Degradation Reaction between Cathode and Solid Electrolyte in All-Solid-State Batteries
    Kim, Jae-Hun
    CORROSION SCIENCE AND TECHNOLOGY-KOREA, 2024, 23 (04): : 334 - 342