Essential dimension of symmetric groups in prime characteristic

被引:0
作者
Edens, Oakley [1 ]
Reichstein, Zinovy [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
Essential dimension; symmetric group; general polynomial; group action on an algebraic variety; positive characteristic;
D O I
10.5802/crmath.577
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The essential dimension ed(k)(S-n) of the symmetric group Sn is the minimal integer d such that the general polynomial x(n) + a(1)x(n-1) + center dot center dot center dot + a(n) can be reduced to a d-parameter form by a Tschirnhaus transformation. Finding this number is a long-standing open problem, originating in the work of Felix Klein, long before essential dimension of a finite group was formally defined. We now know that ed(k)(S-n) lies between [n/2] and n - 3 for each n >= 5 and any field k of characteristic different from 2. Moreover, if char(k) = 0, then ed(k)(S-n) >= [(n + 1)/2] for any n >= 7. The value of ed(k)(S-n) is not known for any n >= 8 and any field k, though it is widely believed that edk (Sn) should be n - 3 for every n >= 5, at least in characteristic 0. In this paper we show that for every prime p there are infinitely many positive integers n such that ed(Fp) (Sn) <= n - 4.
引用
收藏
页数:10
相关论文
共 16 条
[1]  
Berhuy G., 2003, Documenta Math, V8, P279
[2]  
Bourbaki N., 1950, Elements de mathematique. XI. Premiere partie: Les structures fondamentales de l'analyse. Livre II: Algebre. Chapitre IV: Polynomes et fractions rationnelles. Chapitre V: Corps commutatifs, P219
[3]   The Hermite-Joubert problem over p-closed fields [J].
Brassil, Matthew ;
Reichstein, Zinovy .
ALGEBRAIC GROUPS: STRUCTURE AND ACTIONS, 2017, 94 :31-51
[4]  
Brosnan P, 2018, DOC MATH, V23, P1587
[5]   On the essential dimension of a finite group [J].
Buhler, J ;
Reichstein, Z .
COMPOSITIO MATHEMATICA, 1997, 106 (02) :159-179
[6]  
Duncan A, 2010, MATH RES LETT, V17, P263, DOI 10.4310/MRL.2010.v17.n2.a5
[7]  
Elman R., 2008, American Mathematical Society Colloquium Publications, V56
[8]  
Klein Felix., 1956, Lectures on the icosahedron and the solution of equations of the fifth degree, VSecond, P289
[9]   Finite groups of essential dimension one [J].
Ledet, Arne .
JOURNAL OF ALGEBRA, 2007, 311 (01) :31-37
[10]   Essential dimension: a survey [J].
Merkurjev, Alexander S. .
TRANSFORMATION GROUPS, 2013, 18 (02) :415-481