Interplay Between Two Adjacent Electrical Double Layers at Metal | Solid Electrolyte | Liquid Electrolyte Interfaces

被引:1
作者
Qin, Yupeng [1 ,2 ]
Huang, Jun [4 ,5 ]
Zhang, Jie [1 ]
Zhao, Zhiwei [1 ]
Guo, Limin [3 ]
Peng, Zhangquan [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Lab Adv Spectro Electrochem & Liion Batteries, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Dalian Univ, Coll Environm & Chem Engn, Dalian 116622, Peoples R China
[4] Forschungszentrum Julich GmbH, Inst Energy & Climate Res, IEK 13 Theory & Computat Energy Mat, D-52425 Julich, Germany
[5] Rhein Westfal TH Aachen, Fac Georesources & Mat Engn, Theory Electrocatalyt Interfaces, D-52062 Aachen, Germany
基金
国家重点研发计划; 中国国家自然科学基金; 中国博士后科学基金;
关键词
SPACE-CHARGE LAYER; DIELECTRIC-CONSTANT; MIXTURE SOLUTION; TRANSPORT; INTERPHASE; CHEMISTRY;
D O I
10.1021/acs.jpcc.4c03879
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrical double layer (EDL) in modern batteries is radically different from that of the mercury electrode for which the conventional EDL models were initially developed. Particularly, the formation of a solid electrolyte interphase (SEI) divides the electrode-solution interface into two adjacent interfaces, while the interplay between these two EDLs is largely unclear. Herein, considering a metal | solid electrolyte | liquid electrolyte (M|SE|LE) system, we developed continuum models to understand the correlation between the charging states of the two adjacent EDLs. In addition to numerical results, analytical solutions of the differential double layer capacitances for two limiting cases, where the mobile charge countering the metal surface charge exists in either the SE or the LE, are obtained. The critical electrode potential marking the transition between the two limiting cases is analyzed. This work contributes to the understanding of nontraditional electrochemical interfaces in modern batteries.
引用
收藏
页码:14654 / 14662
页数:9
相关论文
共 50 条
[41]   Construction of lithophilic solid electrolyte interfaces with a bottom-up nucleation barrier difference for low-N/P ratio Li-metal batteries [J].
Jiang, Jinlong ;
Hu, Xiaofeng ;
Lu, Shangying ;
Shen, Chao ;
Huang, Shoushuang ;
Liu, Xiaoyu ;
Jiang, Yong ;
Zhang, Jiujun ;
Zhao, Bing .
ENERGY STORAGE MATERIALS, 2023, 54 :885-894
[42]   Diluent decomposition-assisted formation of LiF-rich solid-electrolyte interfaces enables high-energy Li-metal batteries [J].
Zhang, Junbo ;
Zhang, Haikuo ;
Li, Ruhong ;
Lv, Ling ;
Lu, Di ;
Zhang, Shuoqing ;
Xiao, Xuezhang ;
Geng, Shujiang ;
Wang, Fuhui ;
Deng, Tao ;
Chen, Lixin ;
Fan, Xiulin .
JOURNAL OF ENERGY CHEMISTRY, 2023, 78 :71-79
[43]   Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries [J].
Yang, Yun ;
Wu, Qian ;
Wang, Dong ;
Ma, Chenchong ;
Chen, Zheng ;
Su, Qinting ;
Zhu, Caizhen ;
Li, Cuihua .
JOURNAL OF MEMBRANE SCIENCE, 2020, 612
[44]   Ensemble Design of Electrode-Electrolyte Interfaces: Toward High-Performance Thin-Film All-Solid-State Li-Metal Batteries [J].
Xiao, Cheng-Fan ;
Kim, Jong Heon ;
Cho, Su-Ho ;
Park, Yun Chang ;
Kim, Min Jung ;
Chung, Kwun-Bum ;
Yoon, Soon-Gil ;
Jung, Ji-Won ;
Kim, Il-Doo ;
Kim, Hyun-Suk .
ACS NANO, 2021, 15 (03) :4561-4575
[45]   Wide-Temperature and High-Rate Operation of Lithium Metal Batteries Enabled by an Ionic Liquid Functionalized Quasi-Solid-State Electrolyte [J].
Deng, Yonghui ;
Zhao, Shunshun ;
Chen, Yong ;
Wan, Shuang ;
Chen, Shimou .
SMALL, 2024, 20 (27)
[46]   Integrate multifunctional ionic sieve lithiated X zeolite-ionic liquid electrolyte for solid-state lithium metal batteries with ultralong lifespan [J].
Ding, Zhiyu ;
Tang, Qiming ;
Liu, Yanchen ;
Yao, Penghui ;
Liu, Chen ;
Liu, Xingjun ;
Wu, Junwei ;
Lavorgna, Marino .
CHEMICAL ENGINEERING JOURNAL, 2022, 433
[47]   Ionic Liquid-Impregnated ZIF-8/Polypropylene Solid-like Electrolyte for Dendrite-free Lithium-Metal Batteries [J].
Qi, Xinhong ;
Cai, Dan ;
Wang, Xiuli ;
Xia, Xinhui ;
Gu, Changdong ;
Tu, Jiangping .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) :6859-6868
[48]   Interfacial optimization between cathode and 20 μm-thickness solid electrolyte membrane via in-situ polymerization for lithium metal batteries [J].
Ma, Jian ;
Jiang, Hao ;
Chen, Lihan ;
Wu, Yueyue ;
Liu, Yongchao ;
Ping, Weiwei ;
Song, Xiaohui ;
Xiang, Hongfa .
JOURNAL OF POWER SOURCES, 2022, 537
[49]   Improvement of Interface Stability Between Sulfide Solid Electrolyte Li10GeP2P2S12 and Lithium Metal [J].
Zhou, Molin ;
Jiang, Xin ;
Yi, Ting ;
Yang, Xiangguan ;
Zhang, Yibo .
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (08) :1810-1817
[50]   Dynamic Molecular Investigation of the Solid-Electrolyte Interphase of an Anode-Free Lithium Metal Battery Using In Situ Liquid SIMS and Cryo-TEM [J].
Cheng, Cuixia ;
Zhou, Yadong ;
Xu, Yaobin ;
Jia, Hao ;
Kim, Jumyeong ;
Xu, Wu ;
Wang, Chongmin ;
Gao, Peiyuan ;
Zhu, Zihua .
NANO LETTERS, 2023, 23 (18) :8385-8391