Visual Field Prognosis From Macula and Circumpapillary Spectral Domain Optical Coherence Tomography

被引:0
作者
Scandella, Davide [1 ]
Gallardo, Mathias [1 ]
Kucur, Serife S. [2 ]
Sznitman, Raphael [1 ,2 ]
Unterlauft, Jan Darius [3 ]
机构
[1] Univ Bern, ARTORG Ctr, Bern, Switzerland
[2] PeriVision SA, Epalinges, Switzerland
[3] Inselspital Univ Spital Bern, Dept Ophthalmol, Bern, Switzerland
来源
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY | 2024年 / 13卷 / 06期
关键词
glaucoma; visual field; deep learning; NERVE-FIBER LAYER; GLAUCOMA; PERIMETRY; DEFECTS; OCT;
D O I
10.1167/tvst.13.6.10
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To explore the structural-functional loss relationship from optic-nervehead- and macula-centred spectral-domain (SD) Optical Coherence Tomography (OCT) images in the full spectrum of glaucoma patients using deep-learning methods. Methods: A cohort comprising 5238 unique eyes classified as suspects or diagnosed with glaucoma was considered. All patients underwent ophthalmologic examination consisting of standard automated perimetry (SAP), macular OCT, and peri-papillary OCT on the same day. Deep learning models were trained to estimate G-pattern visual field (VF) mean deviation (MD) and cluster MD using retinal thickness maps from seven layers: retinal nerve fiber layer (RNFL), ganglion cell layer and inner plexiform layer (GCL + IPL), inner nuclear layer and outer plexiform layer (INL + OPL), outer nuclear layer (ONL), photoreceptors and retinal pigmented epithelium (PR + RPE), choriocapillaris and choroidal stroma (CC + CS), total retinal thickness (RT). Results: The best performance on MD prediction is achieved by RNFL, GCL + IPL and RT layers, with R2 scores of 0.37, 0.33, and 0.31, respectively. Combining macular and peri-papillary scans outperforms single modality prediction, achieving an R2 value of 0.48. Cluster MD predictions show promising results, notably in central clusters, reaching an R2 of 0.56. Conclusions: The combination of multiple modalities, such as optic-nerve-head circular B-scans and retinal thickness maps from macular SD-OCT images, improves the performance of MD and cluster MD prediction. Our proposed model demonstrates the highest level of accuracy in predicting MD in the early-to-mid stages of glaucoma. Translational Relevance: Objective measures recorded with SD-OCT can optimize the number of visual field tests and improve individualized glaucoma care by adjusting VF testing frequency based on deep-learning estimates of functional damage.
引用
收藏
页数:14
相关论文
共 26 条
  • [1] Apostolopoulos S, 2017, Med Image Comput Assist Interv, V435, P2017
  • [2] Artificial intelligence: the unstoppable revolution in ophthalmology
    Benet, David
    Pellicer-Valero, Oscar J.
    [J]. SURVEY OF OPHTHALMOLOGY, 2022, 67 (01) : 252 - 270
  • [3] Estimating Optical Coherence Tomography Structural Measurement Floors to Improve Detection of Progression in Advanced Glaucoma
    Bowd, Christopher
    Zangwill, Linda M.
    Weinreb, Robert N.
    Medeiros, Felipe A.
    Belghith, Akram
    [J]. AMERICAN JOURNAL OF OPHTHALMOLOGY, 2017, 175 : 37 - 44
  • [4] Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT
    Christopher, Mark
    Bowd, Christopher
    Proudfoot, James A.
    Belghith, Akram
    Goldbaum, Michael H.
    Rezapour, Jasmin
    Fazio, Massimo A.
    Girkin, Christopher A.
    De Moraes, Gustavo
    Liebmann, Jeffrey M.
    Weinreb, Robert N.
    Zangwill, Linda M.
    [J]. OPHTHALMOLOGY, 2021, 128 (11) : 1534 - 1548
  • [5] Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps
    Christopher, Mark
    Bowd, Christopher
    Belghith, Akram
    Goldbaum, Michael H.
    Weinreb, Robert N.
    Fazio, Massimo A.
    Girkin, Christopher A.
    Liebmann, Jeffrey M.
    Zangwill, Linda M.
    [J]. OPHTHALMOLOGY, 2020, 127 (03) : 346 - 356
  • [6] Is There Any Role for the Choroid in Glaucoma?
    Goharian, Iman
    Sehi, Mitra
    [J]. JOURNAL OF GLAUCOMA, 2016, 25 (05) : 452 - 458
  • [7] Visual field defects and retinal ganglion cell losses in patients with glaucoma
    Harwerth, RS
    Quigley, HA
    [J]. ARCHIVES OF OPHTHALMOLOGY, 2006, 124 (06) : 853 - 859
  • [8] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [9] A framework for comparing structural and functional measures of glaucomatous damage
    Hood, Donald C.
    Kardon, Randy H.
    [J]. PROGRESS IN RETINAL AND EYE RESEARCH, 2007, 26 (06) : 688 - 710
  • [10] Ability of stratus OCT to identify localized retinal nerve fiber layer defects in patients with normal standard automated perimetry results
    Kim, Tae-Woo
    Park, Un-Chul
    Park, Ki Ho
    Kim, Dong Myung
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2007, 48 (04) : 1635 - 1641