Optimizing NO2 2 gas sensor performance: Investigating the influence of cobalt doping on WO3 3 recovery kinetics for enhanced gas sensing application

被引:27
作者
Kumar, D. Kanchan [1 ,2 ]
Bharathi, P. [1 ,2 ,3 ]
Archana, J. [1 ,2 ]
Navaneethan, M. [1 ,2 ,3 ]
Harish, S. [1 ,2 ]
机构
[1] SRM Inst Sci & Technol, Dept Phys & Nanotechnol, Funct Mat & Energy Devices Lab, Kattankulathur 603203, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Fac Engn & Technol, Ctr Excellence Mat & Adv Technol CeMAT, Kattankulathur 603203, India
[3] SRM Inst Sci & Technol, Fac Engn & Technol, Nanotechnol Res Ctr NRC, Kattankulathur 603203, Tamil Nadu, India
关键词
NO2 gas sensor; Co-doped WO3; Metal oxide semiconductor; NO2; selectivity; DOPED WO3; TEMPERATURE;
D O I
10.1016/j.snb.2024.136477
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Gas sensors utilizing a chemiresistive metal oxide semiconductor (MOS) are extensively employed, particularly for detecting nitrogen dioxide (NO2) 2 ) at moderate temperatures. However, the gas response and the recovery time are hindering the performance of the MOS. In this research, to enhance the gas response and the recovery time a systematic investigation was performed to explore the impact of cobalt (Co) doping in tungsten trioxide (WO3) 3 ) and its gas sensing properties. Fascinatingly, the 3 mM% Co-doped WO3 3 sensor exhibits a remarkable gas sensing response of 20776 % at 10 ppm NO2, 2 , showcasing a seven-fold enhancement compared to the pristine WO3 3 sample at 200 degree celsius. The findings demonstrated that the sensor exhibited an outstanding repeatability, selectivity and long-term stability of 95 % over 8 weeks. Moreover, the sensor possessed a fast response and recovery time 15 s/23 s as compared to the pristine sensor 26 s/154 s. The exceptional gas-sensing capabilities can be ascribed to the existence of defects (oxygen vacancy) within the structure. These defects effectively boost the surface reactivity of WO3 3 nanoplates, thereby augmenting their sensitivity and enabling a broad-range sensing performance. As a result, this research demonstrates considerable promise for utilizing environmental NO2 2 monitoring applications.
引用
收藏
页数:11
相关论文
共 56 条
[1]   Core-Shell Engineered WO3 Architectures: Recent Advances from Design to Applications [J].
Adhikari, Sangeeta ;
Murmu, Manasi ;
Kim, Do-Heyoung .
SMALL, 2022, 18 (30)
[2]   NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives [J].
Afzal, Adeel ;
Cioffi, Nicola ;
Sabbatini, Luigia ;
Torsi, Luisa .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 171 :25-42
[3]   Aerosol-Assisted CVD-Grown PdO Nanoparticle-Decorated Tungsten Oxide Nanoneedles Extremely Sensitive and Selective to Hydrogen [J].
Annanouch, Fatima E. ;
Haddi, Z. ;
Ling, M. ;
Di Maggio, F. ;
Vallejos, S. ;
Vilic, T. ;
Zhu, Y. ;
Shujah, T. ;
Umek, P. ;
Bittencourt, C. ;
Blackman, C. ;
Llobet, E. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (16) :10413-10421
[4]   Concentration modulated vanadium oxide nanostructures for NO2 gas sensing [J].
Babar, B. M. ;
Pisal, K. B. ;
Mujawar, S. H. ;
Patil, V. L. ;
Kadam, L. D. ;
Pawar, U. T. ;
Kadam, P. M. ;
Patil, P. S. .
SENSORS AND ACTUATORS B-CHEMICAL, 2022, 351
[5]   Growth and influence of Gd doping on ZnO nanostructures for enhanced optical, structural properties and gas sensing applications [J].
Bharathi, P. ;
Mohan, M. Krishna ;
Shalini, V ;
Harish, S. ;
Navaneethan, M. ;
Archana, J. ;
Kumar, M. Ganesh ;
Dhivya, P. ;
Ponnusamy, S. ;
Shimomura, M. ;
Hayakawa, Y. .
APPLIED SURFACE SCIENCE, 2020, 499
[6]   Review-Recent Development of WO3 for Toxic Gas Sensors Applications [J].
Bonardo, Doli ;
Septiani, Ni Luh Wulan ;
Amri, Fauzan ;
Estananto ;
Humaidi, Syahrul ;
Suyatman ;
Yuliarto, Brian .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (10)
[7]   Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics [J].
Boyd, Caleb C. ;
Cheacharoen, Rongrong ;
Leijtens, Tomas ;
McGehee, Michael D. .
CHEMICAL REVIEWS, 2019, 119 (05) :3418-3451
[8]   Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance [J].
Chen, Xinwei ;
Wang, Shuai ;
Su, Chen ;
Han, Yutong ;
Zou, Cheng ;
Zeng, Min ;
Hu, Nantao ;
Su, Yanjie ;
Zhou, Zhihua ;
Yang, Zhi .
SENSORS AND ACTUATORS B-CHEMICAL, 2020, 305
[9]   Synergetic Interplay of Curved Si Nanobelts and WO3 Nanoparticles as Heterostructure Design Featuring Effective Room-Temperature NO2 Detection [J].
Chen, Yu-Ren ;
Chen, Yafeng ;
Chiu, Po-Hao ;
Hsiao, Po-Hsuan ;
Chen, Chia-Yun .
ACS APPLIED NANO MATERIALS, 2022, 5 (07) :8962-8972
[10]   Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells [J].
Choopun, Supab ;
Tubtimtae, Auttasit ;
Santhaveesuk, Theerapong ;
Nilphai, Sanpet ;
Wongrat, Ekasiddh ;
Hongsith, Niyom .
APPLIED SURFACE SCIENCE, 2009, 256 (04) :998-1002