Novel Machine Learning Identifies 5 Asthma Phenotypes Using Cluster Analysis of Real-World Data

被引:1
|
作者
Wu, Chao-Ping [1 ]
Sleiman, Joelle [2 ]
Fakhry, Battoul [2 ]
Chedraoui, Celine [2 ]
Attaway, Amy [1 ,2 ]
Bhattacharyya, Anirban [3 ]
Bleecker, Eugene R. [4 ]
Erdemir, Ahmet [1 ]
Hu, Bo [1 ]
Kethireddy, Shravan [2 ]
Meyers, Deborah A. [3 ,4 ]
Rashidi, Hooman H. [4 ,5 ]
Zein, Joe G. [3 ,4 ]
机构
[1] Cleveland Clin, Resp Inst, Cleveland, OH USA
[2] Cleveland Clin, Lerner Res Inst, Cleveland, OH USA
[3] Mayo Clin, Dept Med, Jacksonville, FL USA
[4] Mayo Clin, Dept Med, Div Pulm Med, Scottsdale, AZ 85259 USA
[5] Cleveland Clin, Pathol & Lab Med Inst, Cleveland, OH USA
来源
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE | 2024年 / 12卷 / 08期
基金
美国国家卫生研究院;
关键词
Asthma; Machine learning; Asthma phenotypes; Cluster analysis; EXPRESSION; SEVERITY; NETWORK; COHORT;
D O I
10.1016/j.jaip.2024.04.035
中图分类号
R392 [医学免疫学];
学科分类号
100102 ;
摘要
BACKGROUND: Asthma classification fi cation into different subphenotypes is important to guide personalized therapy and improve outcomes. OBJECTIVES: To further explore asthma heterogeneity through determination of multiple patient groups by using novel machine learning (ML) approaches and large-scale real-world data. METHODS: We used electronic health records of patients with asthma followed at the Cleveland Clinic between 2010 and 2021. We used k-prototype unsupervised ML to develop a clustering model where predictors were age, sex, race, body mass index, prebronchodilator and postbronchodilator spirometry measurements, and the usage of inhaled/systemic steroids. We applied elbow and silhouette plots to select the optimal number of clusters. These clusters were then evaluated through LightGBM's ' s supervised ML approach on their cross-validated F1 score to support their distinctiveness. RESULTS: Data from 13,498 patients with asthma with available postbronchodilator spirometry measurements were extracted to identify 5 stable clusters. Cluster 1 included a young nonsevere asthma population with normal lung function and higher frequency of acute exacerbation (0.8 /patient-year). Cluster 2 had the highest body mass index (mean +/- SD, 44.44 +/- 7.83 kg/m(2)), and the highest proportion of females (77.5%) and Blacks (28.9%). Cluster 3 comprised patients with normal lung function. Cluster 4 included patients with lower percent of predicted FEV1 of 77.03 (12.79) and poor response to bronchodilators. Cluster 5 had the lowest percent of predicted FEV1 of 68.08 (15.02), the highest postbronchodilator reversibility, and the highest proportion of severe asthma (44.9%) and blood eosinophilia (> 300 cells/mu L) (34.8%). CONCLUSIONS: Using real-world data and unsupervised ML, we classified asthma into 5 clinically important subphenotypes where group-specific fi c asthma treatment and management strategies can be designed and deployed. (c) 2024 American Academy of Allergy, Asthma & Immunology
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Machine Learning Using Real-World and Translational Data to Improve Treatment Selection for NSCLC Patients Treated with Immunotherapy
    Prelaj, Arsela
    Boeri, Mattia
    Robuschi, Alessandro
    Ferrara, Roberto
    Proto, Claudia
    Lo Russo, Giuseppe
    Galli, Giulia
    De Toma, Alessandro
    Brambilla, Marta
    Occhipinti, Mario
    Manglaviti, Sara
    Beninato, Teresa
    Bottiglieri, Achille
    Massa, Giacomo
    Zattarin, Emma
    Gallucci, Rosaria
    Galli, Edoardo Gregorio
    Ganzinelli, Monica
    Sozzi, Gabriella
    de Braud, Filippo G. M.
    Garassino, Marina Chiara
    Restelli, Marcello
    Pedrocchi, Alessandra Laura Giulia
    Trovo, Francesco
    CANCERS, 2022, 14 (02)
  • [22] Using machine learning to identify risk factors for pancreatic cancer: a retrospective cohort study of real-world data
    Su, Na
    Tang, Rui
    Zhang, Yice
    Ni, Jiaqi
    Huang, Yimei
    Liu, Chunqi
    Xiao, Yuzhou
    Zhu, Baoting
    Zhao, Yinglan
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [23] Identification of severe acute pediatric asthma phenotypes using unsupervised machine learning
    Rogerson, Colin
    Sanchez-Pinto, L. Nelson
    Gaston, Benjamin
    Wiehe, Sarah
    Schleyer, Titus
    Tu, Wanzhu
    Mendonca, Eneida
    PEDIATRIC PULMONOLOGY, 2024, 59 (12) : 3313 - 3321
  • [24] A Real-World Data Observational Analysis of the Impact of Liposomal Amphotericin B on Renal Function Using Machine Learning in Critically Ill Patients
    Sacanella, Ignasi
    Esteve-Pitarch, Erika
    Guevara-Chaux, Jessica
    Berrueta, Julen
    Garcia-Martinez, Alejandro
    Gomez, Josep
    Casarino, Cecilia
    Ales, Florencia
    Canadell, Laura
    Martin-Loeches, Ignacio
    Grau, Santiago
    Candel, Francisco Javier
    Bodi, Maria
    Rodriguez, Alejandro
    ANTIBIOTICS-BASEL, 2024, 13 (08):
  • [25] Real World Data for Clinical Trials Designs using Machine Learning
    Prasad, Thejas
    Rashed, Shakeel
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 5991 - 5993
  • [26] Real-world data to measure and improve quality of asthma care
    Tang, Wern Ee
    Abisheganaden, John
    ANNALS ACADEMY OF MEDICINE SINGAPORE, 2023, 52 (10) : 491 - 492
  • [27] Identification of Asthma Phenotypes in the Spanish MEGA Cohort Study Using Cluster Analysis
    Matabuena, Marcos
    Salgado, Francisco Javier
    Nieto-Fontarigo, Juan Jose
    Alvarez-Puebla, Maria J.
    Arismendi, Ebymar
    Barranco, Pilar
    Bobolea, Irina
    Caballero, Maria L.
    Canas, Jose Antonio
    Cardaba, Blanca
    Cruz, Maria Jesus
    Curto, Elena
    Dominguez-Ortega, Javier
    Luna, Juan Alberto
    Martinez-Rivera, Carlos
    Mullol, Joaquim
    Munoz, Xavier
    Rodriguez-Garcia, Javier
    Olaguibel, Jose Maria
    Picado, Cesar
    Plaza, Vicente
    Quirce, Santiago
    Rial, Manuel J.
    Romero-Mesones, Christian
    Sastre, Beatriz
    Soto-Retes, Lorena
    Valero, Antonio
    Valverde-Monge, Marcela
    Del Pozo, Victoria
    Sastre, Joaquin
    Gonzalez-Barcala, Francisco Javier
    ARCHIVOS DE BRONCONEUMOLOGIA, 2023, 59 (04): : 223 - 231
  • [28] Improving Academic Advising in Engineering Education with Machine Learning Using a Real-World Dataset
    Maphosa, Mfowabo
    Doorsamy, Wesley
    Paul, Babu
    ALGORITHMS, 2024, 17 (02)
  • [29] Machine Learning: Algorithms, Real-World Applications and Research Directions
    Sarker I.H.
    SN Computer Science, 2021, 2 (3)
  • [30] Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program
    Moore, Wendy C.
    Meyers, Deborah A.
    Wenzel, Sally E.
    Teague, W. Gerald
    Li, Huashi
    Li, Xingnan
    D'Agostino, Ralph, Jr.
    Castro, Mario
    Curran-Everett, Douglas
    Fitzpatrick, Anne M.
    Gaston, Benjamin
    Jarjour, Nizar N.
    Sorkness, Ronald
    Calhoun, William J.
    Chung, Kian Fan
    Comhair, Suzy A. A.
    Dweik, Raed A.
    Israel, Elliot
    Peters, Stephen P.
    Busse, William W.
    Erzurum, Serpil C.
    Bleecker, Eugene R.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2010, 181 (04) : 315 - 323