A Steel Surface Defect Detection Algorithm Based on Improved YOLOv7

被引:0
作者
Mao, Yihai [1 ]
Zhang, Hongyi [1 ]
Gao, Xingen [1 ]
Luan, Shen [1 ]
Lin, Yuxing [1 ]
Qi, Xuanhao [1 ]
机构
[1] Xiamen Univ Technol, Sch Optoelect & Commun Engn, Xiamen, Fujian, Peoples R China
来源
PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023 | 2023年
关键词
Steel surface defect; Attention mechanism; YOLOv7; Deep learning;
D O I
10.1145/3650400.3650585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the issue of low detection accuracy due to poor-quality steel surfaces, a complex background, and varying defect sizes, this study presents a novel approach to the identification of flaws in the surface on steel by implementing the YOLOv7 framework. Initially, with the BoTNet feature added to the basic structure, the method's base gets better at what it does and can gather information. Subsequently, the nearest neighbor interpolation used in the sampling mechanism of the head network is exchanged for the CARAFE slim upsampling tool to improve its functionality integration qualities. Lastly, the prediction head section adopts the enhanced shuffled attention mechanism (ESAM) to make the algorithm better at making predictions. In the final phase, the algorithm attains a mAP of 84.7% on the NEU-DET dataset and a detection speed of 65 FPS.
引用
收藏
页码:1096 / 1101
页数:6
相关论文
共 50 条
  • [1] Lightweight strip steel defect detection algorithm based on improved YOLOv7
    Lu, Jianbo
    Yu, MiaoMiao
    Liu, Junyu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] Research on Surface Defect Detection of Strip Steel Based on Improved YOLOv7
    Lv, Baozhan
    Duan, Beiyang
    Zhang, Yeming
    Li, Shuping
    Wei, Feng
    Gong, Sanpeng
    Ma, Qiji
    Cai, Maolin
    SENSORS, 2024, 24 (09)
  • [3] STRIP SURFACE DEFECT DETECTION BASED ON IMPROVED YOLOV7
    Wu, Huixin
    Chen, Kaiyuan
    Ni, Mengqi
    Ma, Lin
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2024, 20 (05): : 1493 - 1507
  • [4] Insulator-Defect Detection Algorithm Based on Improved YOLOv7
    Zheng, Jianfeng
    Wu, Hang
    Zhang, Han
    Wang, Zhaoqi
    Xu, Weiyue
    SENSORS, 2022, 22 (22)
  • [5] Improved YOLOv7-based steel surface defect detection algorithm
    Xie, Yinghong
    Yin, Biao
    Han, Xiaowei
    Hao, Yan
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 346 - 368
  • [6] Research on Automated Fiber Placement Surface Defect Detection Based on Improved YOLOv7
    Wen, Liwei
    Li, Shihao
    Dong, Zhentao
    Shen, Haiqing
    Xu, Entao
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [7] An Enhanced Detection Method of PCB Defect Based on Improved YOLOv7
    Yang, Yujie
    Kang, Haiyan
    ELECTRONICS, 2023, 12 (09)
  • [8] A Flame Detection Algorithm Based on Improved YOLOv7
    Yan, Guibao
    Guo, Jialin
    Zhu, Dongyi
    Zhang, Shuming
    Xing, Rui
    Xiao, Zhangshu
    Wang, Qichao
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [9] Research on Low Contrast Surface Defect Detection Method Based on Improved YOLOv7
    Chen, Shuang
    Li, Weipeng
    Yan, Xiang
    Liu, Wen
    Chen, Chao
    Liao, Jinwei
    Chen, Xu
    Shu, Jianqi
    IEEE ACCESS, 2024, 12 : 179997 - 180008
  • [10] Mask wearing detection algorithm based on improved YOLOv7
    Luo, Fang
    Zhang, Yin
    Xu, Lunhui
    Zhang, Zhiliang
    Li, Ming
    Zhang, Weixiong
    MEASUREMENT & CONTROL, 2024, 57 (06) : 751 - 762