MAFBLiF: Multi-Scale Attention Feature Fusion-Based Blind Light Field Image Quality Assessment

被引:3
|
作者
Zhou, Rui [1 ]
Jiang, Gangyi [1 ]
Cui, Yueli [2 ]
Chen, Yeyao [1 ]
Xu, Haiyong [3 ]
Luo, Ting [4 ]
Yu, Mei [1 ]
机构
[1] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Peoples R China
[2] Taizhou Univ, Sch Elect & Informat Engn, Taizhou 318000, Peoples R China
[3] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
[4] Ningbo Univ, Coll Sci & Technol, Ningbo 315300, Peoples R China
关键词
Measurement; Feature extraction; Image quality; Visualization; Tensors; Electronic mail; Distortion measurement; Light field; blind image quality assessment; multi-scale attention; spatial-angular features; pooling;
D O I
10.1109/TBC.2024.3434699
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Light field imaging captures both the intensity and directional information of light rays, providing users with more immersive visual experience. However, during the processes of imaging, processing, coding and reconstruction, light field images (LFIs) may encounter various distortions that degrade their visual quality. Compared to two-dimensional image quality assessment, light field image quality assessment (LFIQA) needs to consider not only the image quality in the spatial domain but also the quality degradation in the angular domain. To effectively model the factors related to visual perception and LFI quality, this paper proposes a multi-scale attention feature fusion based blind LFIQA metric, named MAFBLiF. The proposed metric consists of the following parts: MLI-Patch generation, spatial-angular feature separation module, spatial-angular feature extraction backbone network, pyramid feature alignment module and patch attention module. These modules are specifically designed to extract spatial and angular information of LFIs, and capture multi-level information and regions of interest. Furthermore, a pooling scheme guided by the LFI's gradient information and saliency is proposed, which integrates the quality of all MLI-patches into the overall quality of the input LFI. Finally, to demonstrate the effectiveness of the proposed metric, extensive experiments are conducted on three representative LFI quality evaluation datasets. The experimental results show that the proposed metric outperforms other state-of-the-art image quality assessment metrics. The code will be publicly available at https://github.com/oldblackfish/MAFBLiF.
引用
收藏
页码:1266 / 1278
页数:13
相关论文
共 50 条
  • [21] SSD with multi-scale feature fusion and attention mechanism
    Qiang Liu
    Lijun Dong
    Zhigao Zeng
    Wenqiu Zhu
    Yanhui Zhu
    Chen Meng
    Scientific Reports, 13 (1)
  • [22] Pedestrian detection algorithm based on multi-scale feature extraction and attention feature fusion
    Xia, Hao
    Ma, Jun
    Ou, Jiayu
    Lv, Xinyao
    Bai, Chengjie
    DIGITAL SIGNAL PROCESSING, 2022, 121
  • [23] Opinion-Unaware Blind Image Quality Assessment Using Multi-Scale Deep Feature Statistics
    Ni, Zhangkai
    Liu, Yue
    Ding, Keyan
    Yang, Wenhan
    Wang, Hanli
    Wang, Shiqi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10211 - 10224
  • [24] Retargeted image quality assessment based on multi-scale distortion-aware feature
    Wu Z.
    Zhang S.
    Niu Y.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (12): : 2487 - 2494
  • [25] An Efficient UAV Image Object Detection Algorithm Based on Global Attention and Multi-Scale Feature Fusion
    Qian, Rui
    Ding, Yong
    ELECTRONICS, 2024, 13 (20)
  • [26] Few-shot based learning recaptured image detection with multi-scale feature fusion and attention☆
    Hussain, Israr
    Tan, Shunquan
    Huang, Jiwu
    PATTERN RECOGNITION, 2025, 161
  • [27] Image Super-Resolution Reconstruction Based on Dense Residual Attention and Multi-Scale Feature Fusion
    Shi, Jianguo
    Xiu, Yu
    Tang, Ganyi
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (13)
  • [28] Multi-scale high and low feature fusion attention network for intestinal image classification
    Li, Sheng
    Zhu, Beibei
    Guo, Xinran
    Ye, Shufang
    Ye, Jietong
    Zhuang, Yongwei
    He, Xiongxiong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (06) : 2877 - 2886
  • [29] Collaborative Attention Guided Multi-Scale Feature Fusion Network for Medical Image Segmentation
    Xu, Zhenghua
    Tian, Biao
    Liu, Shijie
    Wang, Xiangtao
    Yuan, Di
    Gu, Junhua
    Chen, Junyang
    Lukasiewicz, Thomas
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (02): : 1857 - 1871
  • [30] Enhancing Medical Image Classification With Context Modulated Attention and Multi-Scale Feature Fusion
    Zhang, Renhan
    Luo, Xuegang
    Lv, Junrui
    Cao, Junyang
    Zhu, Yangping
    Wang, Juan
    Zheng, Bochuan
    IEEE ACCESS, 2025, 13 : 15226 - 15243