Responses of soil fungal and bacterial communities to long-term organic and inorganic nitrogenous fertilizers in an alpine agriculture

被引:2
|
作者
Fu, Gang [1 ]
He, Yongtao [1 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Lhasa Plateau Ecosyst Res Stn, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
Biodiversity; Alpine region; Community assembly; Cooccurrence network; Edaphic microbes; CROP YIELD; ECTOMYCORRHIZAL FUNGI; TIBETAN PLATEAU; MATTER; DIVERSITY; PLANT; MANURE; METAANALYSIS; PHYSIOLOGY; CLIMATE;
D O I
10.1016/j.apsoil.2024.105498
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Although nitrogen fertilizer is an important measure to increase grain yield, response of soil microbial community to nitrogen fertilizer is still unclear in alpine regions. Based on a long-term ( >10 years) nitrogen fertilizer experiment (control, CF: chemical fertilizer, SM: sheep manure; CS: chemical fertilizer + sheep manure) in an alpine agroecosystem of the Lhasa, Xizang, responses of soil bacteria and fungi communities to nitrogen fertilizer was investigated. The CF treatment reduced fungi operational taxonomic unit (OTU) by 13.08 %, phylogenetic diversity by 11.13 % at 10-20 cm, but increased fungi guild number at 0-10 cm by 17.71 %. The SM treatment reduced fungi OTU at 10-20 cm by 11.82 %. Compared to CF and SM treatments, CS treatment had stronger positive effects on bacterial alpha-diversity, considering that CS treatment but not CF and SM treatments increased bacterial mean nearest taxon distance, species Shannon and Simpson at 10-20 cm. The CF, SM and CS treatments altered fungal community composition at 0-10 and 10-20 cm, bacterial community composition at 10-20 cm, and bacterial species composition at 0-10 cm. The CF and CS treatments altered bacterial phylogenetic composition at 0-10 cm, and the SM and CS treatments altered bacterial functional composition at 0-10 cm. The decreased magnitude of the relative abundance of symbiotroph fungi caused by CS treatment (90.44 %) was stronger than that (65.14 % and 53.62 %) caused by CF and SM treatments at 10-20 cm. Therefore, the SM and CS treatments had stronger effects on soil bacterial functional composition, but the CF treatment had stronger effects on fungal alpha-diversity. Compared with single application of organic or inorganic nitrogen fertilizer, mixed application of organic and inorganic nitrogen fertilizer was more beneficial to the maintenance and improvement of soil bacterial diversity, but caused more reduction of soil symbiotic fungi and in turn greater potential risk. These scientific findings observed by this study can provide guidance for fertilizer management and soil fertility improvement.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Long-term effects of untreated wastewater on soil bacterial communities
    Shen, Tianlin
    Liu, Lu
    Li, Yuncong
    Wang, Qiang
    Dai, Jiulan
    Wang, Renqing
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 646 : 940 - 950
  • [42] Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize–wheat cropping system
    Tarinder Kaur
    B. S. Brar
    N. S. Dhillon
    Nutrient Cycling in Agroecosystems, 2008, 81 : 59 - 69
  • [43] Soil bacterial communities associated with multi-nutrient cycling under long-term warming in the alpine meadow
    Zhou, Xiaorong
    Chen, Xianke
    Qi, Xiangning
    Zeng, Yiyuan
    Guo, Xiaowei
    Zhuang, Guoqiang
    Ma, Anzhou
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [44] ARE LONG-TERM CHANGES IN SOIL ORGANIC MATTER REFLECTED IN THE SOIL COMMUNITIES?
    Murray, Phillip J.
    Hirsch, P. R.
    Gilliam, L. M.
    Sohi, S. P.
    Williams, J. K.
    Clark, I. M.
    Brookes, P. C.
    JOURNAL OF NEMATOLOGY, 2009, 41 (04) : 363 - 364
  • [45] Responses of Soil Bacterial and Fungal Communities to Organic and Conventional Farming Systems in East China
    Zhang, Hanlin
    Zheng, Xianqing
    Bai, Naling
    Li, Shuangxi
    Zhang, Juanqin
    Lv, Weiguang
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 29 (03) : 441 - 453
  • [46] Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols
    Ding, Jianli
    Jiang, Xin
    Guan, Dawei
    Zhao, Baisuo
    Ma, Mingchao
    Zhou, Baoku
    Cao, Fengming
    Yang, Xiaohong
    Li, Li
    Li, Jun
    APPLIED SOIL ECOLOGY, 2017, 111 : 114 - 122
  • [47] Effects of Short- and Long-Term Variation in Resource Conditions on Soil Fungal Communities and Plant Responses to Soil Biota
    Hahn, Philip G.
    Buffington, Lorinda
    Larkin, Beau
    LaFlamme, Kelly
    Maron, John L.
    Lekberg, Ylva
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [48] Soil organic carbon dynamics in long-term experiments with mineral and organic fertilizers in Russia
    Romanenkov, Vladimir
    Belichenko, Maya
    Petrova, Alena
    Raskatova, Tatyana
    Jahn, Gabriele
    Krasilnikov, Pavel
    GEODERMA REGIONAL, 2019, 17
  • [49] Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils
    Hongzhao Yuan
    Tida Ge
    Ping Zhou
    Shoulong Liu
    Paula Roberts
    Hanhua Zhu
    Ziying Zou
    Chengli Tong
    Jinshui Wu
    Journal of Soils and Sediments, 2013, 13 : 877 - 886
  • [50] Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils
    Yuan, Hongzhao
    Ge, Tida
    Zhou, Ping
    Liu, Shoulong
    Roberts, Paula
    Zhu, Hanhua
    Zou, Ziying
    Tong, Chengli
    Wu, Jinshui
    JOURNAL OF SOILS AND SEDIMENTS, 2013, 13 (05) : 877 - 886