Responses of soil fungal and bacterial communities to long-term organic and inorganic nitrogenous fertilizers in an alpine agriculture

被引:3
|
作者
Fu, Gang [1 ]
He, Yongtao [1 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Lhasa Plateau Ecosyst Res Stn, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
Biodiversity; Alpine region; Community assembly; Cooccurrence network; Edaphic microbes; CROP YIELD; ECTOMYCORRHIZAL FUNGI; TIBETAN PLATEAU; MATTER; DIVERSITY; PLANT; MANURE; METAANALYSIS; PHYSIOLOGY; CLIMATE;
D O I
10.1016/j.apsoil.2024.105498
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Although nitrogen fertilizer is an important measure to increase grain yield, response of soil microbial community to nitrogen fertilizer is still unclear in alpine regions. Based on a long-term ( >10 years) nitrogen fertilizer experiment (control, CF: chemical fertilizer, SM: sheep manure; CS: chemical fertilizer + sheep manure) in an alpine agroecosystem of the Lhasa, Xizang, responses of soil bacteria and fungi communities to nitrogen fertilizer was investigated. The CF treatment reduced fungi operational taxonomic unit (OTU) by 13.08 %, phylogenetic diversity by 11.13 % at 10-20 cm, but increased fungi guild number at 0-10 cm by 17.71 %. The SM treatment reduced fungi OTU at 10-20 cm by 11.82 %. Compared to CF and SM treatments, CS treatment had stronger positive effects on bacterial alpha-diversity, considering that CS treatment but not CF and SM treatments increased bacterial mean nearest taxon distance, species Shannon and Simpson at 10-20 cm. The CF, SM and CS treatments altered fungal community composition at 0-10 and 10-20 cm, bacterial community composition at 10-20 cm, and bacterial species composition at 0-10 cm. The CF and CS treatments altered bacterial phylogenetic composition at 0-10 cm, and the SM and CS treatments altered bacterial functional composition at 0-10 cm. The decreased magnitude of the relative abundance of symbiotroph fungi caused by CS treatment (90.44 %) was stronger than that (65.14 % and 53.62 %) caused by CF and SM treatments at 10-20 cm. Therefore, the SM and CS treatments had stronger effects on soil bacterial functional composition, but the CF treatment had stronger effects on fungal alpha-diversity. Compared with single application of organic or inorganic nitrogen fertilizer, mixed application of organic and inorganic nitrogen fertilizer was more beneficial to the maintenance and improvement of soil bacterial diversity, but caused more reduction of soil symbiotic fungi and in turn greater potential risk. These scientific findings observed by this study can provide guidance for fertilizer management and soil fertility improvement.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Changes in Bacterial and Fungal Soil Communities in Long-Term Organic Cropping Systems
    Cuartero, Jessica
    Ozbolat, Onurcan
    Sanchez-Navarro, Virginia
    Egea-Cortines, Marcos
    Zornoza, Raul
    Canfora, Loredana
    Orru, Luigi
    Pascual, Jose Antonio
    Vivo, Juana-Maria
    Ros, Margarita
    AGRICULTURE-BASEL, 2021, 11 (05):
  • [2] Responses of soil bacterial and fungal communities to the long-term monoculture of grapevine
    Liu, Qianwen
    Wang, Shixi
    Li, Kun
    Qiao, Jun
    Guo, Yinshan
    Liu, Zhendong
    Guo, Xiuwu
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2021, 105 (18) : 7035 - 7050
  • [3] Long-Term Organic-Inorganic Fertilization Regimes Alter Bacterial and Fungal Communities and Rice Yields in Paddy Soil
    Ma, Tengfei
    He, Xiaohui
    Chen, Shanguo
    Li, Yujia
    Huang, Qiwei
    Xue, Chao
    Shen, Qirong
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [4] Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates
    Zhang, Zhiyong
    Zhang, Xiaoke
    Mahamood, Md.
    Zhang, Shuiqing
    Huang, Shaomin
    Liang, Wenju
    SCIENTIFIC REPORTS, 2016, 6
  • [5] Influence of long-term application of organic and inorganic fertilizers on soil properties
    Simon, T.
    Czako, A.
    PLANT SOIL AND ENVIRONMENT, 2014, 60 (07) : 314 - 319
  • [6] Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland
    Cassman, Noriko A.
    Leite, Marcio F. A.
    Pan, Yao
    de Hollander, Mattias
    van Veen, Johannes A.
    Kuramae, Eiko E.
    SCIENTIFIC REPORTS, 2016, 6
  • [7] Soil bacterial and fungal communities resilience to long-term nitrogen addition in subtropical forests in China
    Fu, Xinlei
    Dai, Yunze
    Cui, Jun
    Deng, Pengfei
    Fan, Wei
    Xu, Xiaoniu
    JOURNAL OF FORESTRY RESEARCH, 2024, 35 (01)
  • [8] Soil Bacterial and Fungal Communities Exhibit Distinct Long-Term Responses to Disturbance in Temperate Forests
    Osburn, Ernest D.
    McBride, Steven G.
    Aylward, Frank O.
    Badgley, Brian D.
    Strahm, Brian D.
    Knoepp, Jennifer D.
    Barrett, J. E.
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [9] The Responses to Long-Term Water Addition of Soil Bacterial, Archaeal, and Fungal Communities in a Desert Ecosystem
    Gao, Ying
    Xu, Xiaotian
    Ding, Junjun
    Bao, Fang
    De Costa, Yashika G.
    Zhuang, Weiqin
    Wu, Bo
    MICROORGANISMS, 2021, 9 (05)
  • [10] Enzymic moderations of bacterial and fungal communities on short- and long-term warming impacts on soil organic carbon
    Wang, Hui
    Li, Jinquan
    Chen, Hongyang
    Liu, Hao
    Nie, Ming
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 804