On the synthesis of biorefineries for high-yield isobutanol production: from biomass-to-alcohol experiments to system level analysis

被引:0
作者
Pastore de Lima, Arthur E. [1 ]
Coplien, Jason [2 ,3 ]
Anthony, Larry C. [4 ]
Sato, Trey K. [2 ]
Zhang, Yaoping [2 ]
Karlen, Steven D. [2 ,3 ]
Hittinger, Chris Todd [2 ,3 ,5 ]
Maravelias, Christos T. [1 ,6 ]
机构
[1] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
[2] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA
[3] Univ Wisconsin Madison, Wisconsin Energy Inst, Madison, WI 53726 USA
[4] IFF, Hlth & Biosci, Wilmington, DE USA
[5] Univ Wisconsin Madison, Wisconsin Energy Inst, JF Crow Inst Study Evolut, Ctr Genom Sci Innovat,Lab Genet, Madison, WI 53726 USA
[6] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
来源
RSC SUSTAINABILITY | 2024年 / 2卷 / 09期
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
NONENZYMATIC SUGAR PRODUCTION; GAMMA-VALEROLACTONE; BIOENERGY; CHEMICALS; STRATEGY; ENERGY;
D O I
10.1039/d4su00283k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The production of isobutanol from lignocellulose has gained attention due to its favorable physical and chemical properties. The use of lignocellulosic biomass as a feedstock to produce isobutanol has substantial sustainability benefits, but the biological conversion to isobutanol faces challenges, such as low yields and by-product formation. In this work, we demonstrate the high-yield production of isobutanol through microbial fermentation of pulp hydrolysates. Three hydrolysates are produced from poplar, sorghum, and switchgrass using pretreatment based on gamma-valerolactone. Furthermore, we synthesize a biomass-to-isobutanol biorefinery and perform technoeconomic analysis of three resulting processes using experimental results obtained from an engineered yeast strain which consumes most of the glucose available in the hydrolysate and produces isobutanol at 89-94% theoretical yields. The corresponding minimum fuel selling price (MFSP) is $14.40-$16.01 per gasoline gallon equivalent, with the sorghum-based biorefinery resulting in the lowest price. We identify that solvent/biomass ratio during pretreatment and enzyme loading during hydrolysis have the greatest impact on the MFSP; improvements in these parameters can reduce the MFSP by 46%. High yield isobutanol production is experimentally demonstrated. The solvent-to-biomass ratio during pretreatment and enzyme production during hydrolysis are identified as the major economic drivers of the biorefinery.
引用
收藏
页码:2532 / 2540
页数:9
相关论文
共 51 条
[1]  
Aden A., 2002, LIGNOCELLULOSIC BIOM
[2]   High-quality fuel distillates produced from oligomerization of light olefin over supported phosphoric acid on H-Zeolite-Y [J].
Al-Kinany, Mohammed C. ;
Al-Drees, Saud A. ;
Al-Megren, Hamid A. ;
Alshihri, Saeed M. ;
Alghilan, Eyad A. ;
Al-Shehri, Feras A. ;
Al-Hamdan, Abdulmohsin S. ;
Alghamdi, Abdullah J. ;
Al-Dress, Sami D. .
APPLIED PETROCHEMICAL RESEARCH, 2019, 9 (01) :35-45
[3]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13
[4]   Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli [J].
Bastian, Sabine ;
Liu, Xiang ;
Meyerowitz, Joseph T. ;
Snow, Christopher D. ;
Chen, Mike M. Y. ;
Arnold, Frances H. .
METABOLIC ENGINEERING, 2011, 13 (03) :345-352
[5]   Corynebacterium glutamicum Tailored for Efficient Isobutanol Production [J].
Blombach, Bastian ;
Riester, Tanja ;
Wieschalka, Stefan ;
Ziert, Christian ;
Youn, Jung-Won ;
Wendisch, Volker F. ;
Eikmanns, Bernhard J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (10) :3300-3310
[6]   New process for sustainable fuels and chemicals from bio-based alcohols and acetone [J].
Breitkreuz, Klaas ;
Menne, Andreas ;
Kraft, Axel .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2014, 8 (04) :504-515
[7]   Techno-Economic Analysis and Life-Cycle Analysis of Two Light-Duty Bioblendstocks: Isobutanol and Aromatic-Rich Hydrocarbons [J].
Cai, Hao ;
Markham, Jennifer ;
Jones, Susanne ;
Benavides, Pahola Thathiana ;
Dunn, Jennifer B. ;
Biddy, Mary ;
Tao, Ling ;
Lamers, Patrick ;
Phillips, Steven .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (07) :8790-8800
[8]   Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism [J].
Chen, Xiao ;
Nielsen, Kristian F. ;
Borodina, Irina ;
Kielland-Brandt, Morten C. ;
Karhumaa, Kaisa .
BIOTECHNOLOGY FOR BIOFUELS, 2011, 4
[9]   High yield co-production of isobutanol and ethanol from switchgrass: experiments, and process synthesis and analysis [J].
de Lima, Arthur Pastore E. ;
Wrobel, Russell L. ;
Paul, Brandon ;
Anthony, Larry C. ;
Sato, Trey K. ;
Zhang, Yaoping ;
Hittinger, Chris Todd ;
Maravelias, Christos T. .
SUSTAINABLE ENERGY & FUELS, 2023, 7 (14) :3266-3275
[10]  
Foster CE., 2010, J VISUALIZED EXPT, V37, pe1837, DOI DOI 10.3791/1837