Observer Design for Multi-Output Systems With Predefined-Time Convergence

被引:0
作者
Kumar, Sunil [1 ]
Soni, Sandeep Kumar [2 ]
Kamal, Shyam [3 ]
Djemai, Mohamed [4 ,5 ]
机构
[1] Indian Inst Technol, TIH Fdn IoT & IoE, Mumbai 400076, India
[2] Shiv Nadar Inst Eminence Delhi NCR, Dept Elect Engn, Greater Noida 201314, India
[3] Indian Inst Technol BHU, Dept Elect Engn, Varanasi 221005, India
[4] UPHF, LAMIH UMR CNRS 8201, INSA Hauts de France, Campus Mont Houy, F-59300 Valenciennes, France
[5] ENSEA, QUARTZ Lab, F-95000 Cergy, France
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
关键词
Observers; Convergence; Nonlinear systems; Power system stability; Tuning; Stability criteria; Numerical stability; Predefined-time stable; MIMO systems; high-gain observers; Lyapunov stability; uniform observability; GAIN; CONTROLLER;
D O I
10.1109/LCSYS.2024.3443048
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter introduces a novel methodology for designing a predefined-time observer for a class of multi-output nonlinear systems with uniform observability. Constructing predefined-time observers for multi-output systems presents a nontrivial extension from the single-output case, particularly when aiming for the error convergence. The predefined-time stability concept is used to devise an observer capable of estimating the system's state of multi-output nonlinear systems within a predetermined time. The construction depends on utilizing saturated estimates that eliminate peaks and relaxes the local Lipschitz condition, thereby ultimately broadening the class for observer existence. Stability analysis of the proposed approach is carried out using the Lyapunov theorem. The comparative simulations of two numerical examples are presented to demonstrate the efficacy of the proposed approach.
引用
收藏
页码:2175 / 2180
页数:6
相关论文
共 30 条
  • [1] A hybrid scheme for reducing peaking in high-gain observers for a class of nonlinear systems
    Andrieu, Vincent
    Prieur, Christophe
    Tarbouriech, Sophie
    Zaccarian, Luca
    [J]. AUTOMATICA, 2016, 72 : 138 - 146
  • [2] Implicit triangular observer form dedicated to a sliding mode observer for systems with unknown inputs
    Boukhobza, T
    Djemai, M
    Barbot, JP
    [J]. ASIAN JOURNAL OF CONTROL, 2003, 5 (04) : 513 - 527
  • [3] Boutat D., 2021, Observer Design for Nonlinear Dynamical Systems, P1, DOI [10.1007/978-3-030-73742-9_1, DOI 10.1007/978-3-030-73742-9_1]
  • [4] High-Gain Dead-Zone Observers for Linear and Nonlinear Plants
    Cocetti, M.
    Tarbouriech, S.
    Zaccarian, L.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (02): : 356 - 361
  • [5] Reduced-Order Observer Design for Robot Manipulators
    Cristofaro, Andrea
    De Luca, Alessandro
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 520 - 525
  • [6] Robust finite time observer design for multicellular converters
    Defoort, Michael
    Djemai, Mohamed
    Floquet, Thierry
    Perruquetti, Wilfrid
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2011, 42 (11) : 1859 - 1868
  • [7] A SIMPLE OBSERVER FOR NONLINEAR-SYSTEMS APPLICATIONS TO BIOREACTORS
    GAUTHIER, JP
    HAMMOURI, H
    OTHMAN, S
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (06) : 875 - 880
  • [8] Predefined-time tracking control for high-order nonlinear systems with control saturation
    Gong, Youmin
    Guo, Yanning
    Li, Dongyu
    Ma, Guangfu
    Ran, Guangtao
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (11) : 6218 - 6235
  • [9] Higher Order Sliding Mode Control-Based Finite-Time Constrained Stabilization
    Goyal, Jitendra Kumar
    Kamal, Shyam
    Patel, Ragini Brijesh
    Yu, Xinghuo
    Mishra, Jyoti Prakash
    Ghosh, Sandip
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (02) : 295 - 299
  • [10] Khalil HK, 2014, INT J ROBUST NONLIN, V24, P993, DOI 10.1002/rnc.3051