Stretchable hybrid electronic network-based e-skin for proximity and multifunctional tactile sensing

被引:2
|
作者
Wen, Xiaohong [1 ]
Zhao, Zengcai [2 ]
Chen, Yuchang [3 ]
Shan, Xinzhi [1 ]
Zhao, Xuefeng [4 ]
Gao, Xiumin [1 ]
Zhuang, Songlin [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China
[2] Fudan Univ, Frontier Inst Chip & Syst, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Inst Intelligent Elect & Syst, Sch Microelect, State Key Lab ASIC & Syst, Shanghai 200433, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
Hybrid electronic network; E-skin; Proximity sensing; Multifunctional tactile sensing; No interference; SENSOR;
D O I
10.1007/s42114-024-00959-7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Multifunctional integrated flexible electronic skin (e-skin) is the essential medium for information exchange between humans and machines. Especially, the proximity/pressure/strain sensing has become a technological goal for various emerging wearable electronic devices, such as biomonitoring devices, smart electronics, augmented reality, and prosthetics. Herein, a stretchable hybrid electronic network-based e-skin is presented, fabricated by embedding 3D hollow MXene spheres/Ag NWs hybrid nanocomposite into PDMS, which can effectively avoid the electrode falling off due to stress concentration. This e-skin works in noncontact mode (proximity-negative capacitance) and contact mode (pressure-positive capacitance and strain-resistance) for multiplex detection of random external force stimuli without mutual interference. The macroscopic physical structure of stretchable electrodes and the microscopic hybrid three-dimensional conductive network jointly contribute to the good sensing performance of the device. This work provides an effective and universal strategy for the application of wearable intelligent electronic products that demand noncontact interaction and multimodal tactile perception.
引用
收藏
页数:11
相关论文
共 23 条
  • [21] Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin
    Zheng, Yanjun
    Yin, Rui
    Zhao, Ye
    Liu, Hu
    Zhang, Dianbo
    Shi, Xianzhang
    Zhang, Bing
    Liu, Chuntai
    Shen, Changyu
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [22] NiO@SiO2/PVDF: A Flexible Polymer Nanocomposite for a High Performance Human Body Motion-Based Energy Harvester and Tactile e-Skin Mechanosensor
    Dutta, Biplab
    Kar, Epsita
    Bose, Navonil
    Mukherjee, Sampad
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (08): : 10505 - 10516
  • [23] Deep Learning Based Large-Area Contact Sensing for Safe Human-Robot Interaction Using Conformal Kirigami Structure-Enabled Robotic E-Skin
    Jiao, Rui
    Wang, Zhengjun
    Wang, Ruoqin
    Xu, Qian
    Jiang, Jiacheng
    Zhang, Boyang
    Yang, Simin
    Li, Yang
    Cheung, Yik Kin
    Shi, Fan
    Yu, Hongyu
    ADVANCED INTELLIGENT SYSTEMS, 2025,