Rhythms of Victory: Predicting Professional Tennis Matches Using Machine Learning

被引:0
|
作者
Lei, Yilin [1 ]
Lin, Ao [2 ]
Cao, Jianuo, Jr. [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Comp Sci, Nanjing 210023, Jiangsu, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Forecasting; support vector machine; machine learning; particle swarm optimization; tennis; PSYCHOLOGICAL MOMENTUM; SUCCESS; WINNER; SERIES; MODEL; TIME;
D O I
10.1109/ACCESS.2024.3444031
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Forecasting the winning matches of professional tennis players has a wide range of practical applications. We introduced an innovative approach to quantify and combine strategic and psychological momentum using the entropy weight method and analytic hierarchy process, and tested its effectiveness. Utilizing data from the Wimbledon Championship 2023, we constructed a support vector machine model to predict the turning point and winner of each point, and optimized it using particle swarm optimization. Our model achieved a significant level of accuracy (96.09% for turning point and 83.52% for predicting the winner) and performed well in different courts and players. Furthermore, we compared its performance with commonly utilized predictive models, including ARIMA, LSTM and BP networks, and found that our model exhibited higher accuracy than other existing models in predicting the point winner. Our study provides a reference for the role of momentum in dynamic matches, and our model can be used to calculate the odds of tennis matches and provide guidance to coaches.
引用
收藏
页码:113608 / 113617
页数:10
相关论文
共 50 条
  • [41] Predicting the Spread of a Pandemic Using Machine Learning: A Case Study of COVID-19 in the UAE
    Sankalpa, Donthi
    Dhou, Salam
    Pasquier, Michel
    Sagahyroon, Assim
    APPLIED SCIENCES-BASEL, 2024, 14 (10):
  • [42] Applications of Machine Learning to Optimize Tennis Performance: A Systematic Review
    Sampaio, Tatiana
    Oliveira, Joao P.
    Marinho, Daniel A.
    Neiva, Henrique P.
    Morais, Jorge E.
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [43] Predicting Packaging Sizes Using Machine Learning
    Heininger M.
    Ortner R.
    Operations Research Forum, 3 (3)
  • [44] Predicting the Geoeffectiveness of CMEs Using Machine Learning
    Pricopi, Andreea-Clara
    Paraschiv, Alin Razvan
    Besliu-Ionescu, Diana
    Marginean, Anca-Nicoleta
    ASTROPHYSICAL JOURNAL, 2022, 934 (02)
  • [45] Predicting ASD Using Optimized Machine Learning
    Almana, Shaikhah
    Hammad, Mustafa
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 1598 - 1602
  • [46] Predicting Hadoop misconfigurations using machine learning
    Robert, Andrew
    Gupta, Apaar
    Shenoy, Vinayak
    Sitaram, Dinkar
    Kalambur, Subramaniam
    SOFTWARE-PRACTICE & EXPERIENCE, 2020, 50 (07) : 1168 - 1183
  • [47] Predicting Diabetes Using Machine Learning Techniques
    Kirgil, Elif Nur Haner
    Erkal, Begum
    Ayyildiz, Tulin Ercelebi
    2022 INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED COMPUTER SCIENCE AND ENGINEERING (ICTASCE), 2022, : 137 - 141
  • [48] Predicting Phishing Vulnerabilities Using Machine Learning
    Rutherford, Sarah
    Lin, Kevin
    Blaine, Raymond W.
    SOUTHEASTCON 2022, 2022, : 779 - 786
  • [49] Predicting apple bruising using machine learning
    Holmes, G
    Cunningham, SJ
    Dela Rue, BT
    Bollen, AF
    INTERNATIONAL SYMPOSIUM ON APPLICATIONS OF MODELLING AS AN INNOVATIVE TECHNOLOGY IN THE AGRI-FOOD-CHAIN - MODEL-IT, 1998, (476): : 289 - 296
  • [50] Predicting abatacept retention using machine learning
    Alten, Rieke
    Behar, Claire
    Merckaert, Pierre
    Afari, Ebenezer
    Vannier-Moreau, Virginie
    Ohayon, Anael
    Connolly, Sean E.
    Najm, Aurelie
    Juge, Pierre-Antoine
    Liu, Gengyuan
    Rai, Angshu
    Elbez, Yedid
    Lozenski, Karissa
    ARTHRITIS RESEARCH & THERAPY, 2025, 27 (01)