Approximation and decomposition of attractors of a Hopfield neural network system

被引:0
|
作者
Danca, Marius-F. [1 ,2 ]
Chen, Guanrong [3 ]
机构
[1] Babes Bolyai Univ, STAR UBB Inst, Cluj Napoca, Romania
[2] Romanian Inst Sci & Technol, Cluj Napoca, Romania
[3] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
关键词
Hopfield neural network system; Parameter switching algorithm; Numerical attractor; Attractors approximation; Attractor decomposition; TRANSIENT CHAOS;
D O I
10.1016/j.chaos.2024.115213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the Parameter Switching (PS) algorithm is used to numerically approximate attractors of a Hopfield Neural Network (HNN) system. The PS algorithm is a convergent scheme designed for approximating the attractors of an autonomous nonlinear system, depending linearly on a real parameter. Aided by the PS algorithm, it is shown that every attractor of the HNN system can be expressed as a convex combination of other attractors. The HNN system can easily be written in the form of a linear parameter dependence system, to which the PS algorithm can be applied. This work suggests the possibility to use the PS algorithm as a control-like or anticontrol-like method for chaos.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A Hopfield neural network with multiple attractors and its FPGA design
    Rajagopal, Karthikeyan
    Munoz-Pacheco, Jesus M.
    Viet-Thanh Pham
    Duy Vo Hoang
    Alsaadi, Fawaz E.
    Alsaadi, Fuad E.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (7-9): : 811 - 820
  • [2] A Hopfield neural network with multiple attractors and its FPGA design
    Karthikeyan Rajagopal
    Jesus M. Munoz-Pacheco
    Viet-Thanh Pham
    Duy Vo Hoang
    Fawaz E. Alsaadi
    Fuad E. Alsaadi
    The European Physical Journal Special Topics, 2018, 227 : 811 - 820
  • [3] Random Attractors of a Stochastic Hopfield Neural Network Model with Delays
    Hu, Wenjie
    Zhu, Quanxin
    Kloeden, Peter E.
    Duan, Yueliang
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
  • [4] Coexisting and multiple scroll attractors in a Hopfield neural network with a controlled memristor
    Ma, Qing-Qing
    Lu, An-Jiang
    Huang, Zhi
    CHINESE PHYSICS B, 2024, 33 (12)
  • [5] Coexisting and multiple scroll attractors in a Hopfield neural network with a controlled memristor
    马青青
    陆安江
    黄智
    Chinese Physics B, 2024, 33 (12) : 251 - 260
  • [6] Stability thresholds of attractors of the Hopfield network
    Soloviev, I. A.
    Klinshov, V. V.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2023, 31 (01): : 75 - 85
  • [7] Hopfield neural network with multi-scroll attractors and application in image encryption
    Zhenhua Hu
    Chunhua Wang
    Multimedia Tools and Applications, 2024, 83 : 97 - 117
  • [8] Hopfield neural network with multi-scroll attractors and application in image encryption
    Hu, Zhenhua
    Wang, Chunhua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 97 - 117
  • [9] Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network
    Bao, Bocheng
    Qian, Hui
    Wang, Jiang
    Xu, Quan
    Chen, Mo
    Wu, Huagan
    Yu, Yajuan
    NONLINEAR DYNAMICS, 2017, 90 (04) : 2359 - 2369
  • [10] Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network
    Bocheng Bao
    Hui Qian
    Jiang Wang
    Quan Xu
    Mo Chen
    Huagan Wu
    Yajuan Yu
    Nonlinear Dynamics, 2017, 90 : 2359 - 2369