Kernelized Extension for Multiple-Expert-Learning Classifiers Using Support Vector Machines

被引:0
作者
Bajja, Mohammed [1 ]
Aalaila, Yahya [1 ,2 ]
Umaquinga-Criollo, Ana C. [1 ,3 ,4 ]
Guachi-Guachi, Lorena [1 ,5 ]
Peluffo-Ordonez, Diego H. [1 ,2 ]
机构
[1] SDAS Res Grp, Ben Guerir 43150, Morocco
[2] Mohammed VI Polytech Univ, Coll Comp, Lot 660, Ben Guerir 43150, Morocco
[3] Inst Super Tecnol Ibarra, Ave Atahualpa, Ibarra 100101, Ecuador
[4] Univ Tecn Norte, Ave 17 Julio, Ibarra 100105, Ecuador
[5] Univ Int Ecuador, Dept Mechatron, Ave Simon Bolivar, Quito 70411, Ecuador
来源
INTELLIGENT COMPUTING, VOL 4, 2024 | 2024年 / 1019卷
关键词
Supervised learning; Support vector machines; Multiple expert learning; Kernel trick; ANNOTATORS;
D O I
10.1007/978-3-031-62273-1_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The primary goal for supervised machine learning techniques is to make accurate predictions or classifications based on prior knowledge about the relationships between the input features and their corresponding label assignment. The latter is often difficult to be determine, especially when the ground truth is not unique but instead, a combined decision from a group of experts is given. One way to tackle this challenge is by using Multiple Expert Learning (MEL)-driven classifiers. In this regard, approaches based on Soft-margin support vector machines (SM-SVM) including penalty factors for each labeler have shown to be a suitable alternative as they can learn from experts holding different levels of trustworthiness. Nonetheless, dealing with nonlinear (complex structure) and hardly separable data is still an open issue. To address these problems, this work presents mathematical developments on SVM for MEL scenarios in a fully matrix formulation. As a remarkable contribution, we introduce a kernel extension of the SM-SVM problem for MEL scenarios together with a complete solution following from a quadratic programming approach.
引用
收藏
页码:66 / 79
页数:14
相关论文
共 50 条
  • [41] Evapotranspiration modelling using support vector machines
    Kisi, Ozgur
    Cimen, Mesut
    HYDROLOGICAL SCIENCES JOURNAL, 2009, 54 (05) : 918 - 928
  • [42] Seismic detection using support vector machines
    Ruano, A. E.
    Madureira, G.
    Barros, O.
    Khosravani, H. R.
    Ruano, M. G.
    Ferreira, P. M.
    NEUROCOMPUTING, 2014, 135 : 273 - 283
  • [43] Flood forecasting using support vector machines
    Han, D.
    Chan, L.
    Zhu, N.
    JOURNAL OF HYDROINFORMATICS, 2007, 9 (04) : 267 - 276
  • [44] Forecast of Temperature using Support Vector Machines
    Perez-Vega, Abrahan
    Travieso, Carlos M.
    Hernandez-Travieso, Jose G.
    Alonso, Jesus B.
    Dutta, Malay Kishore
    Singh, Anushikha
    2016 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), 2016, : 388 - 392
  • [45] Classification of Performers using Support Vector Machines
    Reljin, Natasa
    Pokrajac, Dragoljub
    NEUREL 2008: NINTH SYMPOSIUM ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING, PROCEEDINGS, 2008, : 156 - +
  • [46] RECOGNITION OF REPETITIONS USING SUPPORT VECTOR MACHINES
    Palfy, Juraj
    Pospichal, Jiri
    SPA 2011: SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS CONFERENCE PROCEEDINGS, 2011, : 79 - 84
  • [47] Classification of Torreya Using Support Vector Machines
    Wang, Xiaodong
    Chang, Jianli
    2012 THIRD INTERNATIONAL CONFERENCE ON TELECOMMUNICATION AND INFORMATION (TEIN 2012), 2012, : 212 - 216
  • [48] Financial forecasting using support vector machines
    Cao, L
    Tay, FEH
    NEURAL COMPUTING & APPLICATIONS, 2001, 10 (02) : 184 - 192
  • [49] Texture classification using the support vector machines
    Li, ST
    Kwok, JT
    Zhu, HL
    Wang, YN
    PATTERN RECOGNITION, 2003, 36 (12) : 2883 - 2893
  • [50] Robust γ-filter using support vector machines
    Camps-Valls, G
    Martínez-Ramón, M
    Rojo-Alvarez, JL
    Soria-Olivas, E
    NEUROCOMPUTING, 2004, 62 : 493 - 499