Self-assembled Si-based anode combined with electrostatic spinning method to realize high-performance lithium-ion batteries

被引:0
|
作者
Wang, Fangfang [1 ,2 ]
Jia, Fudong [1 ,2 ]
Pan, Jinghong [1 ]
Sun, Chuxiao [1 ]
Zhang, Ranshuo [1 ,2 ]
Yu, Furen [1 ]
Sang, Jingjing [1 ,2 ]
Qi, Wang [1 ]
机构
[1] Northeastern Univ, Coll Sci, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
关键词
Si; CuO; CNFs; Lithium-ion batteries; HIGH VOLUMETRIC CAPACITY; LONG CYCLE LIFE; AT-C; NANOSPHERES; REACTIVITY; PARTICLES;
D O I
10.1016/j.jallcom.2024.176083
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Addressing the volume expansion when silicon and metal oxides alone are used as anode materials for lithium- ion batteries. This study used a simple self-assembly method and electrostatic spinning technique to prepare silicon@copper oxide@carbon nanofibres (CNFs) anodes with dual modification. The high rigidity of metal oxide CuO and the excellent cycling stability of CNFs effectively reduce the buildup of silicon particles, alleviate the volume expansion effect, and improve the electrical conductivity, which leads to better cycling stability and larger specific capacity of lithium-ion batteries. An excellent reversible specific capacity of 748.5 mAh g(-1) was observed after 800 cycles at a high current density of 1 A g(- 1). In addition, the surface of Si@CuO@CNFs electrodes remains smooth and undamaged after 800 cycles, and the increase in cross-sectional thickness is about 68 %, which is significantly smaller than the 300 % increase in cross-sectional thickness of pure Si anode and effectively improves the specific capacity of Li-ion batteries. This research optimizes the design of silicon-based anode materials with simple and mature process technology, which makes an indispensable contribution to developing high-efficiency, long-life, and environmentally friendly lithium-ion batteries. The easy availability and non-polluting nature of the materials used also effectively reduce the reliance on rare or expensive elements, minimize the production process's environmental impact, and vigorously promote the global energy transition and low-carbon green development strategy.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] LiCrTiO4: A High-Performance Insertion Anode for Lithium-Ion Batteries
    Aravindan, Vanchiappan
    Ling, Wong Chui
    Madhavi, Srinivasan
    CHEMPHYSCHEM, 2012, 13 (14) : 3263 - 3266
  • [32] New Insights into the High-Performance Black Phosphorus Anode for Lithium-Ion Batteries
    Li, Minsi
    Li, Weihan
    Hu, Yongfeng
    Yakovenko, Andrey A.
    Ren, Yang
    Luo, Jing
    Holden, William M.
    Shakouri, Mohsen
    Xiao, Qunfeng
    Gao, Xuejie
    Zhao, Feipeng
    Liang, Jianwen
    Feng, Renfei
    Li, Ruying
    Seidler, Gerald T.
    Brandys, Frank
    Divigalpitiya, Ranjith
    Sham, Tsun-Kong
    Sun, Xueliang
    ADVANCED MATERIALS, 2021, 33 (35)
  • [33] Ag Nanoparticles Anchored on Nanoporous Ge Skeleton as High-Performance Anode for Lithium-ion Batteries
    Zhou, Ji
    Huang, Peng
    Hao, Qin
    Zhang, Lina
    Liu, Hong
    Xu, Caixia
    Yu, Jinghua
    CHINESE JOURNAL OF CHEMISTRY, 2021, 39 (10) : 2881 - 2888
  • [34] Tetragonal BN monolayer: A high-performance anode material for lithium-ion batteries
    Xiong, Xin
    Lu, Zheng
    Liu, Chun-Sheng
    Ye, Xiao-Juan
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 232
  • [35] CuO/rGO nanocomposite as an anode material for high-performance lithium-ion batteries
    Li, Yong
    Duan, Chao Nan
    Jiang, Zhou
    bin Zhou, Xue
    Wang, Ying
    MATERIALS RESEARCH EXPRESS, 2021, 8 (05)
  • [36] Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries
    Huang, Shiqiang
    Cheong, Ling-Zhi
    Wang, Deyu
    Shen, Cai
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (28) : 23672 - 23678
  • [37] Lithium Germanate (Li2GeO3): A High-Performance Anode Material for Lithium-Ion Batteries
    Rahman, Md Mokhlesur
    Sultana, Irin
    Yang, Tianyu
    Chen, Zhiqiang
    Sharma, Neeraj
    Glushenkov, Alexey M.
    Chen, Ying
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (52) : 16059 - 16063
  • [38] Mussel-inspired polydopamine treated Si/C electrode as high-performance anode for lithium-ion batteries
    Wang, Rumeng
    Feng, Dongjin
    Chen, Tianhua
    Chen, Shimou
    Liu, Yuwen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 825
  • [39] Stability electrochemical performance of self-assembled hierarchical MnCO3/MWCNT nanocomposite as anode material for lithium-ion batteries
    Su, Danyang
    Wang, Jing
    Yang, Zhao
    Liu, Shuang
    Yang, Jinping
    Yao, Shaowei
    Feng, Xiaoxin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (11) : 3485 - 3491
  • [40] Stability electrochemical performance of self-assembled hierarchical MnCO3/MWCNT nanocomposite as anode material for lithium-ion batteries
    Danyang Su
    Jing Wang
    Zhao Yang
    Shuang Liu
    Jinping Yang
    Shaowei Yao
    Xiaoxin Feng
    Journal of Solid State Electrochemistry, 2018, 22 : 3485 - 3491