Identification and Functional Analysis of the EPF/EPFL Gene Family in Maize (Zea mays L.): Implications for Drought Stress Response

被引:2
|
作者
Xia, Hanchao [1 ]
Wang, Qi [2 ]
Chen, Ziqi [2 ]
Sun, Xiaopeng [3 ]
Zhao, Fangfang [4 ]
Zhang, Di [1 ]
Fei, Jianbo [2 ,5 ]
Zhao, Rengui [1 ]
Yin, Yuejia [2 ]
机构
[1] Jilin Agr Univ, Coll Agron, Changchun 130118, Peoples R China
[2] Jilin Acad Agr Sci, Inst Agr Biotechnol, Northeast Innovat Ctr Agr Sci & Technol China, Jilin Prov Key Lab Agr Biotechnol, Changchun 130033, Peoples R China
[3] Hubei Acad Agr Sci, Wuhan 430064, Peoples R China
[4] Harbin Normal Univ, Coll Life Sci & Technol, Key Lab Mol Cytogenet & Genet Breeding Heilongjian, Harbin 150025, Peoples R China
[5] Jilin Agr Sci & Technol Coll, Agr Coll, Jilin 132101, Peoples R China
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 08期
基金
中国国家自然科学基金;
关键词
ZmEPF/EPFL gene family; development; drought stress; Zea mays L; ABIOTIC STRESS; ARABIDOPSIS; TOLERANCE; DENSITY;
D O I
10.3390/agronomy14081734
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Maize, a vital cereal in global agriculture, faces significant yield challenges due to drought exacerbated by climate change. This study explores the genetic and molecular bases of drought resilience in maize, focusing on the EPF/EPFL gene family known for its role in stomatal regulation. Through a genome-wide analysis across seven grass species, we identified and characterized 16 ZmEPF/EPFL genes in maize. Focusing on their gene structure, expression patterns, and evolutionary relationships. The study integrated genome-wide searches, phylogenetic analysis, gene expression profiling under drought and other abiotic stresses, and qRT-PCR validation to elucidate the functional roles of these genes in drought response. Our results demonstrate that specific ZmEPF/EPFL genes are differentially expressed under varying drought conditions, suggesting their involvement in the plant's adaptive response to water scarcity. Furthermore, interaction analyses reveal that these genes are linked to key processes such as stomatal development and oxidative stress management. This study provides a comprehensive overview of the ZmEPF/EPFL gene family's contribution to stomatal development and drought tolerance, offering insights that could guide future breeding strategies for drought-resistant maize varieties.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] GENERATION MEAN ANALYSIS IN MAIZE (ZEA MAYS L.) UNDER DROUGHT STRESS
    Moharramnejad, Sajjad
    Valizadeh, Mostafa
    Emaratpardaz, Javid
    FRESENIUS ENVIRONMENTAL BULLETIN, 2018, 27 (04): : 2518 - 2522
  • [2] BIOINFORMATICS ANALYSIS OF ZMBBI GENE FAMILY OF MAIZE (ZEA MAYS L.)
    Jiang, Long
    Zhang, Jingzhe
    Yu, Xiaoming
    Liu, Jiaxin
    Yu, Haiyan
    Li, Jianming
    BANGLADESH JOURNAL OF BOTANY, 2020, 49 (03): : 857 - 866
  • [3] Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress
    Caixia Sun
    Xiaoxiao Gao
    Jianqi Fu
    Jiahao Zhou
    Xiaofei Wu
    Plant and Soil, 2015, 388 : 99 - 117
  • [4] Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought
    Chugh, Vishal
    Kaur, Narinder
    Gupta, Anil K.
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2011, 48 (01): : 47 - 53
  • [5] Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.)
    Cao, Liru
    Lu, Xiaomin
    Wang, Guorui
    Zhang, Pengyu
    Fu, Jiaxu
    Wang, Zhenhua
    Wei, Li
    Wang, Tongchao
    MOLECULAR GENETICS AND GENOMICS, 2021, 296 (06) : 1203 - 1219
  • [6] Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress
    Sun, Caixia
    Gao, Xiaoxiao
    Fu, Jianqi
    Zhou, Jiahao
    Wu, Xiaofei
    PLANT AND SOIL, 2015, 388 (1-2) : 99 - 117
  • [7] Role of polyamines and phospholipase D in maize (Zea mays L.) response to drought stress
    An, Z. F.
    Li, C. Y.
    Zhang, L. X.
    Alva, A. K.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2012, 83 : 145 - 150
  • [8] Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.)
    Liru Cao
    Xiaomin Lu
    Guorui Wang
    Pengyu Zhang
    Jiaxu Fu
    Zhenhua Wang
    Li Wei
    Tongchao Wang
    Molecular Genetics and Genomics, 2021, 296 : 1203 - 1219
  • [9] Root Morphology and Gene Expression Analysis in Response to Drought Stress in Maize (Zea mays)
    Jiang, Tingbo
    Fountain, Jake
    Davis, Georgia
    Kemerait, Robert
    Scully, Brian
    Lee, R. Dewey
    Guo, Baozhu
    PLANT MOLECULAR BIOLOGY REPORTER, 2012, 30 (02) : 360 - 369
  • [10] Root Morphology and Gene Expression Analysis in Response to Drought Stress in Maize (Zea mays)
    Tingbo Jiang
    Jake Fountain
    Georgia Davis
    Robert Kemerait
    Brian Scully
    R. Dewey Lee
    Baozhu Guo
    Plant Molecular Biology Reporter, 2012, 30 : 360 - 369