Offset Linear Canonical Stockwell Transform for Boehmians

被引:4
作者
Kaur, Navneet [1 ]
Gupta, Bivek [2 ]
Verma, Amit K. [1 ]
Agarwal, Ravi P. [3 ]
机构
[1] IIT Patna, Dept Math, Patna 801106, India
[2] Chinmaya Vishwa Vidyapeeth, Sch Ethics Governance Culture & Social Syst, Ernakulam 682313, Kerala, India
[3] Florida Inst Technol, Dept Math & Syst Engn, Melbourne, FL 32901 USA
关键词
offset linear canonical Stockwell transform; Boehmian space; almost periodic function; FRACTIONAL FOURIER-TRANSFORM; WAVELET TRANSFORM; S-TRANSFORM; SIGNALS; SPACES;
D O I
10.3390/math12152379
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we construct a Boehmian space using the convolution theorem that contains the offset linear canonical Stockwell transforms (OLCST) of all square-integrable Boehmians. It is also proven that the extended OLCST on square-integrable Boehmians is consistent with the traditional OLCST. Furthermore, it is one-to-one, linear, and continuous with respect to Delta-convergence as well as Delta-convergence. Subsequently, we introduce a discrete variant of the OLCST. Ultimately, we broaden the application of the presented work by examining the OLCST within the domain of almost periodic functions.
引用
收藏
页数:18
相关论文
共 57 条
[1]   OPTICAL OPERATIONS ON WAVE-FUNCTIONS AS THE ABELIAN SUBGROUPS OF THE SPECIAL AFFINE FOURIER TRANSFORMATION [J].
ABE, S ;
SHERIDAN, JT .
OPTICS LETTERS, 1994, 19 (22) :1801-1803
[2]   THE FRACTIONAL FOURIER-TRANSFORM AND TIME-FREQUENCY REPRESENTATIONS [J].
ALMEIDA, LB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :3084-3091
[3]  
Atanasiu D., 2007, COLLOQ MATH-WARSAW, V108, P263
[4]  
BESICOvITCH A. S., 1954, ALMOST PERIODIC FUNC
[5]  
Betancor J., 1996, Math. Jpn, V44, P81
[6]  
Betancor J., 1995, Appl. Anal, V58, P367, DOI [10.1080/00036819508840383, DOI 10.1080/00036819508840383]
[7]   Gabor systems and almost periodic functions [J].
Boggiatto, Paolo ;
Fernandez, Carmen ;
Galbis, Antonio .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, 42 (01) :65-87
[8]   THE FOURIER-TRANSFORM [J].
BRACEWELL, RN .
SCIENTIFIC AMERICAN, 1989, 260 (06) :86-&
[9]  
Burzyk Z, 2005, ROCKY MT J MATH, V35, P727
[10]  
Cattermole K. W., 1965, Electron Power, V11, P35, DOI [DOI 10.1049/EP.1965.0268, 10.1049/ep.1965.0268., 10.1049/ep.1965.0268]