High-order Topology for Deep Single-Cell Multiview Fuzzy Clustering

被引:8
作者
Hu, Dayu [1 ]
Dong, Zhibin [1 ]
Liang, Ke [1 ]
Yu, Hao [1 ]
Wang, Siwei [2 ]
Liu, Xinwang [1 ]
机构
[1] Natl Univ Def Technol, Sch Comp, Changsha 410073, Peoples R China
[2] Intelligent Game & Decis Lab, Beijing 100071, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Sequential analysis; Clustering methods; Clustering algorithms; Fuzzy systems; Partitioning algorithms; Data models; Topology; Cross-view aggregation; deep fuzzy clustering; high-order topology; multiview clustering; MODEL;
D O I
10.1109/TFUZZ.2024.3399740
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single-cell multiview clustering is essential for analyzing the different cell subtypes of the same cell from different views. Some attempts have been made, but most of these models still struggle to handle single-cell sequencing data, primarily due to their nonspecific design for cellular data. We observe that such data distinctively exhibits: 1) a profusion of high-order topological correlations, 2) a disparate distribution of information across different views, and 3) inherent fuzzy characteristics, indicating a cell's potential to associate with multiple cluster identities. Neglecting these key cellular patterns could significantly impair medical clustering. In response, we propose a specialized application of fuzzy clustering for single-cell sequencing data, namely, the deep single-cell multiview fuzzy clustering method. Concretely, we employ a random walk technique to capture high-order topological relationships on the cell graph and have developed a cross-view information aggregation mechanism that adaptively assigns weights to different views. Furthermore, to accurately reflect the dynamic insight in cellular development, we propose a deep fuzzy clustering strategy that allows cells to associate with diverse clusters. Extensive experiments conducted on three real-world single-cell multiview datasets demonstrate our method's superior performance.
引用
收藏
页码:4448 / 4459
页数:12
相关论文
共 73 条
[31]   Knowledge Graph Contrastive Learning Based on Relation-Symmetrical Structure [J].
Liang, Ke ;
Liu, Yue ;
Zhou, Sihang ;
Tu, Wenxuan ;
Wen, Yi ;
Yang, Xihong ;
Dong, Xiangjun ;
Liu, Xinwang .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) :226-238
[32]   An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos [J].
Liu, Longqi ;
Leng, Lizhi ;
Liu, Chuanyu ;
Lu, Changfu ;
Yuan, Yue ;
Wu, Liang ;
Gong, Fei ;
Zhang, Shuoping ;
Wei, Xiaoyu ;
Wang, Mingyue ;
Zhao, Lei ;
Hu, Liang ;
Wang, Jian ;
Yang, Huanming ;
Zhu, Shida ;
Chen, Fang ;
Lu, Guangxiu ;
Shang, Zhouchun ;
Li, Ge .
NATURE COMMUNICATIONS, 2019, 10 (1)
[33]   Self-Supervised Temporal Graph Learning With Temporal and Structural Intensity Alignment [J].
Liu, Meng ;
Liang, Ke ;
Zhao, Yawei ;
Tu, Wenxuan ;
Gan, Xinbiao ;
Zhou, Sihang ;
Liu, Xinwang ;
He, Kunlun .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (04) :6355-6367
[34]   MTGDC: A Multi-Scale Tensor Graph Diffusion Clustering for Single-Cell RNA Sequencing Data [J].
Liu, Qiaoming ;
Wang, Dong ;
Zhou, Li ;
Li, Jie ;
Wang, Guohua .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (05) :3056-3067
[35]  
Liu SY, 2022, AAAI CONF ARTIF INTE, P7576
[36]  
Lotfollahi M., 2022, bioRxiv
[37]   Integrative analysis of scRNA-seq and scATAC-seq revealed transit-amplifying thymic epithelial cells expressing autoimmune regulator [J].
MIyao, Takahisa ;
Miyauchi, Maki ;
Kelly, S. Thomas ;
Terooatea, Tommy W. ;
Ishikawa, Tatsuya ;
Oh, Eugene ;
Hirai, Sotaro ;
Horie, Kenta ;
Takakura, Yuki ;
Ohki, Houko ;
Hayama, Mio ;
Maruyama, Yuya ;
Seki, Takao ;
Ishii, Hiroto ;
Yabukami, Haruka ;
Yoshida, Masaki ;
Inoue, Azusa ;
Sakaue-Sawano, Asako ;
Miyawaki, Atsushi ;
Muratani, Masafumi ;
Minoda, Aki ;
Akiyama, Nobuko ;
Akiyama, Taishin .
ELIFE, 2022, 11
[38]   Single-cell RNA-seq clustering: datasets, models, and algorithms [J].
Peng, Lihong ;
Tian, Xiongfei ;
Tian, Geng ;
Xu, Junlin ;
Huang, Xin ;
Weng, Yanbin ;
Yang, Jialiang ;
Zhou, Liqian .
RNA BIOLOGY, 2020, 17 (06) :765-783
[39]   Machine learning and statistical methods for clustering single-cell RNA-sequencing data [J].
Petegrosso, Raphael ;
Li, Zhuliu ;
Kuang, Rui .
BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) :1209-1223
[40]  
Ponnaganti Krishna Priyanka, 2023, 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), P1658, DOI 10.1109/ICEARS56392.2023.10085188