Single-cell and spatial multiomic inference of gene regulatory networks using SCRIPro

被引:3
作者
Chang, Zhanhe [1 ,2 ,3 ]
Xu, Yunfan [1 ,2 ]
Dong, Xin [1 ,2 ]
Gao, Yawei [2 ,3 ]
Wang, Chenfei [1 ,2 ,4 ,5 ]
机构
[1] Tongji Univ, Tongji Hosp, Sch Life Sci & Technol, Dept Orthoped,Key Lab Spine & Spinal Cord Injury R, Shanghai 200092, Peoples R China
[2] Tongji Univ, Frontier Sci Ctr Stem Cell Res, Shanghai, Peoples R China
[3] Tongji Univ, Shanghai East Hosp, Inst Regenerat Med, Sch Life Sci & Technol,Shanghai Key Lab Signaling, Shanghai, Peoples R China
[4] Tongji Univ, Natl Key Lab Autonomous Intelligent Unmanned Syst, Shanghai 200120, Peoples R China
[5] Tongji Univ, Frontier Sci Ctr Intelligent Autonomous Syst, Shanghai 200120, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
TRANSCRIPTION-FACTOR; EXPRESSION; DIFFERENTIATION; ACCESSIBILITY; CHROMATIN; RECEPTOR; LIGANDS; NEURONS; MEF2C;
D O I
10.1093/bioinformatics/btae466
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation The burgeoning generation of single-cell or spatial multiomic data allows for the characterization of gene regulation networks (GRNs) at an unprecedented resolution. However, the accurate reconstruction of GRNs from sparse and noisy single-cell or spatial multiomic data remains challenging.Results Here, we present SCRIPro, a comprehensive computational framework that robustly infers GRNs for both single-cell and spatial multiomics data. SCRIPro first improves sample coverage through a density clustering approach based on multiomic and spatial similarities. Additionally, SCRIPro scans transcriptional regulator (TR) importance by performing chromatin reconstruction and in silico deletion analyses using a comprehensive reference covering 1292 human and 994 mouse TRs. Finally, SCRIPro combines TR-target importance scores derived from multiomic data with TR-target expression levels to ensure precise GRN reconstruction. We benchmarked SCRIPro on various datasets, including single-cell multiomic data from human B-cell lymphoma, mouse hair follicle development, Stereo-seq of mouse embryos, and Spatial-ATAC-RNA from mouse brain. SCRIPro outperforms existing motif-based methods and accurately reconstructs cell type-specific, stage-specific, and region-specific GRNs. Overall, SCRIPro emerges as a streamlined and fast method capable of reconstructing TR activities and GRNs for both single-cell and spatial multiomic data.Availability and implementation SCRIPro is available at https://github.com/wanglabtongji/SCRIPro.
引用
收藏
页数:18
相关论文
共 87 条
[11]   Multi-omics single-cell data integration and regulatory inference with graph-linked embedding [J].
Cao, Zhi-Jie ;
Gao, Ge .
NATURE BIOTECHNOLOGY, 2022, 40 (10) :1458-+
[12]   Zinc-finger proteins in health and disease [J].
Cassandri, Matteo ;
Smirnov, Artem ;
Novelli, Flavia ;
Pitolli, Consuelo ;
Agostini, Massimiliano ;
Malewicz, Michal ;
Melino, Gerry ;
Raschella, Giuseppe .
CELL DEATH DISCOVERY, 2017, 3
[13]   Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures [J].
Chan, Thalia E. ;
Stumpf, Michael P. H. ;
Babtie, Ann C. .
CELL SYSTEMS, 2017, 5 (03) :251-+
[14]   Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays [J].
Chen, Ao ;
Liao, Sha ;
Cheng, Mengnan ;
Ma, Kailong ;
Wu, Liang ;
Lai, Yiwei ;
Qiu, Xiaojie ;
Yang, Jin ;
Xu, Jiangshan ;
Hao, Shijie ;
Wang, Xin ;
Lu, Huifang ;
Chen, Xi ;
Liu, Xing ;
Huang, Xin ;
Li, Zhao ;
Hong, Yan ;
Jiang, Yujia ;
Peng, Jian ;
Liu, Shuai ;
Shen, Mengzhe ;
Liu, Chuanyu ;
Li, Quanshui ;
Yuan, Yue ;
Wei, Xiaoyu ;
Zheng, Huiwen ;
Feng, Weimin ;
Wang, Zhifeng ;
Liu, Yang ;
Wang, Zhaohui ;
Yang, Yunzhi ;
Xiang, Haitao ;
Han, Lei ;
Qin, Baoming ;
Guo, Pengcheng ;
Lai, Guangyao ;
Munoz-Canoves, Pura ;
Maxwell, Patrick H. ;
Thiery, Jean Paul ;
Wu, Qing-Feng ;
Zhao, Fuxiang ;
Chen, Bichao ;
Li, Mei ;
Dai, Xi ;
Wang, Shuai ;
Kuang, Haoyan ;
Hui, Junhou ;
Wang, Liqun ;
Fei, Ji-Feng ;
Wang, Ou .
CELL, 2022, 185 (10) :1777-+
[15]  
Chen J., 2023, bioRxiv
[16]   Prdm16 Deficiency Leads to Age-Dependent Cardiac Hypertrophy, Adverse Remodeling, Mitochondrial Dysfunction, and Heart Failure [J].
Cibi, Dasan Mary ;
Bi-Lin, Kathleen Wung ;
Shekeran, Shamini Guna ;
Sandireddy, Reddemma ;
Tee, Nicole ;
Singh, Anamika ;
Wu, Yajun ;
Srinivasan, Dinesh Kumar ;
Kovalik, Jean-Paul ;
Ghosh, Sujoy ;
Seale, Patrick ;
Singh, Manvendra K. .
CELL REPORTS, 2020, 33 (03)
[17]  
Domcke S., 2020, Science
[18]   Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder [J].
Dong, Kangning ;
Zhang, Shihua .
NATURE COMMUNICATIONS, 2022, 13 (01)
[19]   Single-cell gene regulation network inference by large-scale data integration [J].
Dong, Xin ;
Tang, Ke ;
Xu, Yunfan ;
Wei, Hailin ;
Han, Tong ;
Wang, Chenfei .
NUCLEIC ACIDS RESEARCH, 2022, 50 (21) :E126
[20]   Giotto: a toolbox for integrative analysis and visualization of spatial expression data [J].
Dries, Ruben ;
Zhu, Qian ;
Dong, Rui ;
Eng, Chee-Huat Linus ;
Li, Huipeng ;
Liu, Kan ;
Fu, Yuntian ;
Zhao, Tianxiao ;
Sarkar, Arpan ;
Bao, Feng ;
George, Rani E. ;
Pierson, Nico ;
Cai, Long ;
Yuan, Guo-Cheng .
GENOME BIOLOGY, 2021, 22 (01)