Hybrid convolutional neural network optimized with an artificial algae algorithm for glaucoma screening using fundus images

被引:0
|
作者
Eswari, M. Shanmuga [1 ]
Balamurali, S. [1 ]
Ramasamy, Lakshmana Kumar [2 ]
机构
[1] Kalasalingam Acad Res & Educ, Dept Comp Applicat, Krishnankoil, Tamil Nadu, India
[2] Higher Coll Technol, Ras Al Khaymah, U Arab Emirates
关键词
TernausNet; faster region-based convolutional neural network; artificial algae algorithm; support vector machine; glaucoma; screening; fundus; OPTIC DISC; DIAGNOSIS; SEGMENTATION; NERVE; CUP;
D O I
10.1177/03000605241271766
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Objective We developed an optimized decision support system for retinal fundus image-based glaucoma screening.Methods We combined computer vision algorithms with a convolutional network for fundus images and applied a faster region-based convolutional neural network (FRCNN) and artificial algae algorithm with support vector machine (AAASVM) classifiers. Optic boundary detection, optic cup, and optic disc segmentations were conducted using TernausNet. Glaucoma screening was performed using the optimized FRCNN. The Softmax layer was replaced with an SVM classifier layer and optimized with an AAA to attain enhanced accuracy.Results Using three retinal fundus image datasets (G1020, digital retinal images vessel extraction, and high-resolution fundus), we obtained accuracy of 95.11%, 92.87%, and 93.7%, respectively. Framework accuracy was amplified with an adaptive gradient algorithm optimizer FRCNN (AFRCNN), which achieved average accuracy 94.06%, sensitivity 93.353%, and specificity 94.706%. AAASVM obtained average accuracy of 96.52%, which was 3% ahead of the FRCNN classifier. These classifiers had areas under the curve of 0.9, 0.85, and 0.87, respectively.Conclusion Based on statistical Friedman evaluation, AAASVM was the best glaucoma screening model. Segmented and classified images can be directed to the health care system to assess patients' progress. This computer-aided decision support system will be useful for optometrists.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Enhanced convolutional neural network architecture optimized by improved chameleon swarm algorithm for melanoma detection using dermatological images
    Wu, Weiqi
    Wen, Liuyan
    Yuan, Shaoping
    Lu, Xiuyi
    Yang, Juan
    Sofla, Asad Rezaei
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [42] Fundus image-based cataract classification using a hybrid convolutional and recurrent neural network
    Azhar Imran
    Jianqiang Li
    Yan Pei
    Faheem Akhtar
    Tariq Mahmood
    Li Zhang
    The Visual Computer, 2021, 37 : 2407 - 2417
  • [43] Fundus image-based cataract classification using a hybrid convolutional and recurrent neural network
    Imran, Azhar
    Li, Jianqiang
    Pei, Yan
    Akhtar, Faheem
    Mahmood, Tariq
    Zhang, Li
    VISUAL COMPUTER, 2021, 37 (08): : 2407 - 2417
  • [44] Automatic Annotation Algorithm of Medical Radiological Images using Convolutional Neural Network
    Li, Xiaofeng
    Wang, Yanwei
    Cai, Yingjie
    Wang, Yanwei (xianxinyue@163.com), 1600, Elsevier B.V. (152): : 158 - 165
  • [45] Automatic Annotation Algorithm of Medical Radiological Images using Convolutional Neural Network
    Li, Xiaofeng
    Wang, Yanwei
    Cai, Yingjie
    PATTERN RECOGNITION LETTERS, 2021, 152 : 158 - 165
  • [46] Detection of Glaucoma from Fundus Images Using Novel Evolutionary-Based Deep Neural Network
    M. Madhumalini
    T. Meera Devi
    Journal of Digital Imaging, 2022, 35 : 1008 - 1022
  • [47] Detection of Glaucoma from Fundus Images Using Novel Evolutionary-Based Deep Neural Network
    Madhumalini, M.
    Devi, T. Meera
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (04) : 1008 - 1022
  • [48] Laser Scar Detection in Fundus Images Using Convolutional Neural Networks
    Wei, Qijie
    Li, Xirong
    Wang, Hao
    Ding, Dayong
    Yu, Weihong
    Chen, Youxin
    COMPUTER VISION - ACCV 2018, PT IV, 2019, 11364 : 191 - 206
  • [49] Supervised feature ranking using a genetic algorithm optimized artificial neural network
    Lin, Thy-Hou
    Chiu, Shih-Hau
    Tsai, Keng-Chang
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2006, 46 (04) : 1604 - 1614
  • [50] Seminal Quality Prediction using Optimized Artificial Neural Network with Genetic Algorithm
    Bidgoli, Azam Asilian
    Komleh, Hossein Ebrahimpour
    Mousavirad, Seyed Jalaleddin
    2015 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), 2015, : 695 - 699