Tailoring microstructure in a soft-magnetic Fe-based amorphous-nanocrystalline alloy for high resistivity according to electrical percolation threshold

被引:3
作者
Zhang, Wenfeng [1 ]
Li, Ran [1 ]
Wang, Jianfeng [2 ]
Zhang, Ting [1 ]
Gao, Yu [1 ]
Zhang, Tao [1 ,3 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
[3] Zhengzhou Univ, Ctr Adv Anal & Gene Sequencing, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Amorphous alloy; Soft magnetic properties; Resistivity; Percolation; ATOM-PROBE; NB; PERMEABILITY; COMPOSITES;
D O I
10.1016/j.matdes.2024.113311
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Superior soft-magnetic materials are necessary for the development of modern magnetic devices with energysaving and high-power density requirements. However, improving the magnetism by nanocrystallization always brings about the sacrifice of resistivity, presenting a common trade-off in Fe-based amorphous-nanocrystalline alloys. Here, the comprehensive merits of both superior soft-magnetic properties (high saturation magnetization of 1.81 T and low coercivity of 3.8 A/m) and high resistivity of 117.2 mu 52 center dot cm were obtained by precisely tailoring amorphous-nanocrystalline microstructure close to electrical percolation threshold for a Fe82.5B12P2C1Cu0.5Co2 amorphous alloy. The soft-magnetic properties are attributed to the low magnetic anisotropy stemming from high nuclei number density and ultrafine nanocrystalline grains of 9.2 nm. The high resistivity is associated with the electrical percolation behavior with a nanocrystalline volume threshold of 14.8 % in the composite alloy. The results provide an effective strategy to overcome the trade-off in traditional amorphous-nanocrystalline alloys, significant for applications in high-frequency, high-power, and energy-saving devices.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Novel Fe-based amorphous and nanocrystalline powder cores for high-frequency power conversion [J].
Alvarez, Kenny L. ;
Baghbaderani, H. A. ;
Martin, J. M. ;
Burgos, N. ;
Ipatov, M. ;
Pavlovic, Z. ;
McCloskey, P. ;
Masood, A. ;
Gonzalez, J. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 501
[2]  
Cardarelli F., 2018, Materials Handbook, P737
[3]   Improved permeability and core loss of amorphous FeSiB /Ni-Zn ferrite soft magnetic composites prepared in an external magnetic field [J].
Chang, Jiasong ;
Zhan, Tongkang ;
Peng, Xiaoling ;
Li, Jing ;
Yang, Yanting ;
Xu, Jingcai ;
Hong, Bo ;
Jin, Dingfeng ;
Jin, Hongxiao ;
Wang, Xinqing ;
Ge, Hongliang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 886
[4]   Three-dimensional atom probe study of Fe-B-based nanocrystalline soft magnetic materials [J].
Chen, Y. M. ;
Ohkubo, T. ;
Ohta, M. ;
Yoshizawa, Y. ;
Hono, K. .
ACTA MATERIALIA, 2009, 57 (15) :4463-4472
[5]   Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials [J].
Deng, Hua ;
Lin, Lin ;
Ji, Mizhi ;
Zhang, Shuangmei ;
Yang, Mingbo ;
Fu, Qiang .
PROGRESS IN POLYMER SCIENCE, 2014, 39 (04) :627-655
[6]  
Flandin L, 2000, J APPL POLYM SCI, V76, P894, DOI 10.1002/(SICI)1097-4628(20000509)76:6<894::AID-APP16>3.0.CO
[7]  
2-K
[8]   A mechanically strong and ductile soft magnet with extremely low coercivity [J].
Han, Liuliu ;
Maccari, Fernando ;
Souza Filho, Isnaldi R. ;
Peter, Nicolas J. ;
Wei, Ye ;
Gault, Baptiste ;
Gutfleisch, Oliver ;
Li, Zhiming ;
Raabe, Dierk .
NATURE, 2022, 608 (7922) :310-316
[9]   Applications of amorphous magnetic alloys [J].
Hasegawa, R .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :90-97
[10]   RECENT DEVELOPMENTS IN SOFT MAGNETIC-MATERIALS [J].
HERZER, G ;
HILZINGER, HR .
PHYSICA SCRIPTA, 1988, T24 :22-28