Coanalytic models for Hardy-type operators

被引:0
作者
Fu, Xiangdi [1 ]
Guo, Kunyu [1 ]
Yan, Fugang [1 ,2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hardy operator; Hardy inequality; coanalytic model; Bergman space; THEOREM;
D O I
10.1007/s11425-023-2192-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish coanalytic models for a broad class of Hardy-type operators on L2[0, 1]. In particular, we show that the logarithmic Hardy operator is unitarily equivalent to the difference between the identity operator and the backward shift on a Bergman-type space. This result leads to several applications related to zero sets and invariant subspaces in weighted Bergman spaces. Additionally, we study logarithmic Hardy operators on Lp[0, 1] and obtain results concerning their boundedness, operator norms, and spectra.
引用
收藏
页码:2771 / 2788
页数:18
相关论文
共 29 条
[1]   Complete Nevanlinna-Pick kernels [J].
Agler, J ;
McCarthy, JE .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 175 (01) :111-124
[2]  
Agler J, 2002, Grad. Stud. Math., V44
[3]   THE HARDY-WEYL ALGEBRA [J].
Agler, Jim ;
Mccarthy, John E. .
JOURNAL OF OPERATOR THEORY, 2024, 91 (02) :521-544
[4]   Asymptotic Muntz-Szasz theorems [J].
Agler, Jim ;
McCarthy, John E. .
STUDIA MATHEMATICA, 2023, 270 (03) :301-322
[5]   Beurling's theorem for the Hardy operator on L2[0,1] [J].
Agler, Jim ;
McCarthy, John E. E. .
ACTA SCIENTIARUM MATHEMATICARUM, 2023, 89 (3-4) :573-592
[6]   A generalization of Hardy?s operator and an asymptotic M?ntz-Sz?sz Theorem [J].
Agler, Jim ;
McCarthy, John E. .
EXPOSITIONES MATHEMATICAE, 2022, 40 (04) :920-930
[7]   Monomial operators [J].
Agler, Jim ;
McCarthy, John E. .
ACTA SCIENTIARUM MATHEMATICARUM, 2022, 88 (1-2) :371-381
[8]  
Borwein P., 1995, POLYNOMIALS POLYNOMI, DOI 10.1007/978-1-4612-0793-1
[9]  
BOYD DW, 1968, ACTA SCI MATH, V29, P31
[10]  
Brown A., 1965, ACTA SCI MATH SZEGED, V26, P125