Coanalytic models for Hardy-type operators

被引:0
|
作者
Fu, Xiangdi [1 ]
Guo, Kunyu [1 ]
Yan, Fugang [1 ,2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Hardy operator; Hardy inequality; coanalytic model; Bergman space; THEOREM;
D O I
10.1007/s11425-023-2192-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish coanalytic models for a broad class of Hardy-type operators on L2[0, 1]. In particular, we show that the logarithmic Hardy operator is unitarily equivalent to the difference between the identity operator and the backward shift on a Bergman-type space. This result leads to several applications related to zero sets and invariant subspaces in weighted Bergman spaces. Additionally, we study logarithmic Hardy operators on Lp[0, 1] and obtain results concerning their boundedness, operator norms, and spectra.
引用
收藏
页码:2771 / 2788
页数:18
相关论文
共 50 条
  • [1] Interpolation of Operators in Hardy-Type Spaces
    Krotov, V. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 323 (01) : 173 - 187
  • [2] SHARP WEAK ESTIMATES FOR HARDY-TYPE OPERATORS
    Gao, Guilian
    Hu, Xiaomin
    Zhang, Chunjie
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (03): : 421 - 433
  • [3] Optimal rearrangement invariant range for Hardy-type operators
    Soria, Javier
    Tradacete, Pedro
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (04) : 865 - 893
  • [4] General Hardy-type operators on local generalized Morrey spaces
    Yee, Tat-leung
    Ho, Kwok-pun
    CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2025, 8 (01): : 1 - 14
  • [5] Hardy-type inequalities for Dunkl operators with applications to many-particle Hardy inequalities
    Velicu, Andrei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (06)
  • [6] HARDY-TYPE OPERATORS IN LORENTZ-TYPE SPACES DEFINED ON MEASURE SPACES
    Sun, Qinxiu
    Yu, Xiao
    Li, Hongliang
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03) : 1105 - 1132
  • [7] A Hardy-type inequality in two dimensions
    Kumar, Suket
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (02): : 247 - 260
  • [8] Hardy-Type Operators in Lorentz-Type Spaces Defined on Measure Spaces
    Qinxiu Sun
    Xiao Yu
    Hongliang Li
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1105 - 1132
  • [9] HARDY-TYPE INEQUALITIES FOR Lp SEQUENCES
    Bouthat, Ludovick
    Mashreghi, Javad
    Morneau-Guerin, Frederic
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (03): : 1165 - 1178
  • [10] Boundedness and compactness of Hardy-type integral operators on Lorentz-type spaces
    Li, Hongliang
    Sun, Qinxiu
    Yu, Xiao
    FORUM MATHEMATICUM, 2018, 30 (04) : 997 - 1011