Analysis of quantum Krylov algorithms with errors

被引:0
|
作者
Kirby, William [1 ]
机构
[1] IBM Res Cambridge, IBM Quantum, Cambridge, MA 02142 USA
来源
QUANTUM | 2024年 / 8卷
关键词
HAMILTONIAN SIMULATION;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work provides a nonasymptotic error analysis of quantum Krylov algorithms based on real-time evolutions, subject to generic errors in the outputs of the quantum circuits. We prove upper and lower bounds on the resulting ground state energy estimates, and the error associated to the upper bound is linear in the input error rates. This resolves a misalignment between known numerics, which exhibit approximately linear error scaling, and prior theoretical analysis, which only provably obtained scaling with the error rate to the power 3 2 . Our main technique is to express generic errors in terms of an effective target Hamiltonian studied in an effective Krylov space. These results provide a theoretical framework for understanding the main features of quantum Krylov errors.
引用
收藏
页数:27
相关论文
共 12 条
  • [1] Some error analysis for the quantum phase estimation algorithms
    Li, Xiantao
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (32)
  • [2] Quantum algorithms for quantum dynamics
    Miessen, Alexander
    Ollitrault, Pauline J.
    Tacchino, Francesco
    Tavernelli, Ivano
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (01): : 25 - 37
  • [3] IMPROVING QUANTUM ALGORITHMS FOR QUANTUM CHEMISTRY
    Hastings, Matthew B.
    Wecker, Dave
    Bauer, Bela
    Troyer, Matthias
    QUANTUM INFORMATION & COMPUTATION, 2015, 15 (1-2) : 1 - 21
  • [4] Quantum Algorithms and Applications for Open Quantum Systems
    Delgado-Granados, Luis H.
    Krogmeier, Timothy J.
    Sager-Smith, LeeAnn M.
    Avdic, Irma
    Hu, Zixuan
    Sajjan, Manas
    Abbasi, Maryam
    Smart, Scott E.
    Narang, Prineha
    Kais, Sabre
    Schlimgen, Anthony W.
    Head-Marsden, Kade
    Mazziotti, David A.
    CHEMICAL REVIEWS, 2025, 125 (04) : 1823 - 1839
  • [5] Measurement reduction in variational quantum algorithms
    Zhao, Andrew
    Tranter, Andrew
    Kirby, William M.
    Ung, Shu Fay
    Miyake, Akimasa
    Love, Peter J.
    PHYSICAL REVIEW A, 2020, 101 (06)
  • [6] Optimized Quantum Program Execution Ordering to Mitigate Errors in Simulations of Quantum Systems
    Tomesh, Teague
    Gui, Kaiwen
    Gokhale, Pranav
    Shi, Yunong
    Chong, Frederic T.
    Martonosi, Margaret
    Suchara, Martin
    2021 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2021), 2021, : 1 - 13
  • [7] Quantum Algorithms for Simulating the Lattice Schwinger Model
    Shaw, Alexander F.
    Lougovski, Pavel
    Stryker, Jesse R.
    Wiebe, Nathan
    QUANTUM, 2020, 4
  • [8] Quantum Algorithms for the Solution of Matrix Equations in Electromagnetics
    Phillips, Christopher
    Okhmatovski, Vladimir, I
    2021 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2021,
  • [9] QUANTUM ALGORITHMS FOR MULTISCALE PARTIAL DIFFERENTIAL EQUATIONS
    Hu, Junpeng
    Jin, Shi
    Zhang, Lei
    MULTISCALE MODELING & SIMULATION, 2024, 22 (03) : 1030 - 1067
  • [10] Quantum algorithms for powering stable Hermitian matrices
    Gonzalez, Guillermo
    Trivedi, Rahul
    Cirac, J. Ignacio
    PHYSICAL REVIEW A, 2021, 103 (06)