Enhancing mean-variance portfolio optimization through GANs-based anomaly detection

被引:2
作者
Kim, Jang Ho [1 ]
Kim, Seyoung [2 ]
Lee, Yongjae [2 ,3 ]
Kim, Woo Chang [4 ]
Fabozzi, Frank J. [5 ]
机构
[1] Korea Univ, Grad Sch Management Technol, Seoul, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Dept Ind Engn, Ulsan, South Korea
[3] Ulsan Natl Inst Sci & Technol UNIST, Artificial Intelligence Grad Sch, Ulsan, South Korea
[4] Korea Adv Inst Sci & Technol KAIST, Dept Ind & Syst Engn, Daejeon 34141, South Korea
[5] Johns Hopkins Univ, Hopkins Carey Business Sch, Baltimore, MD USA
基金
新加坡国家研究基金会;
关键词
Portfolio optimization; Generative adversarial networks; Anomaly detection; Gerber statistic;
D O I
10.1007/s10479-024-06293-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Mean-variance optimization, introduced by Markowitz, is a foundational theory and methodology in finance and optimization, significantly influencing investment management practices. This study enhances mean-variance optimization by integrating machine learning-based anomaly detection, specifically using GANs (generative adversarial networks), to identify anomaly levels in the stock market. We demonstrate the utility of GANs in detecting market anomalies and incorporating this information into portfolio optimization using robust methods such as shrinkage estimators and the Gerber statistic. Empirical analysis confirms that portfolios optimized with anomaly scores outperform those using conventional portfolio optimization. This study highlights the potential of advanced data-driven techniques to improve risk management and portfolio performance.
引用
收藏
页码:217 / 244
页数:28
相关论文
共 61 条
[1]  
Bashar MA, 2020, 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), P1778, DOI [10.1109/SSCI47803.2020.9308512, 10.1109/ssci47803.2020.9308512]
[2]   Robo Advisors: quantitative methods inside the robots [J].
Beketov, Mikhail ;
Lehmann, Kevin ;
Wittke, Manuel .
JOURNAL OF ASSET MANAGEMENT, 2018, 19 (06) :363-370
[3]   ON A MEASURE OF DEPENDENCE BETWEEN 2 RANDOM VARIABLES [J].
BLOMQVIST, N .
ANNALS OF MATHEMATICAL STATISTICS, 1950, 21 (04) :593-600
[4]   Shrinkage Algorithms for MMSE Covariance Estimation [J].
Chen, Yilun ;
Wiesel, Ami ;
Eldar, Yonina C. ;
Hero, Alfred O. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (10) :5016-5029
[5]   Basic Enhancement Strategies When Using Bayesian Optimization for Hyperparameter Tuning of Deep Neural Networks [J].
Cho, Hyunghun ;
Kim, Yongjin ;
Lee, Eunjung ;
Choi, Daeyoung ;
Lee, Yongjae ;
Rhee, Wonjong .
IEEE ACCESS, 2020, 8 :52588-52608
[6]   The effects of errors in means, variances, and correlations on the mean-variance framework [J].
CHUNG, M. U. N. K., I ;
LEE, Y. O. N. G. J. A. E. ;
KIM, J. A. N. G. H. O. ;
KIM, W. O. O. C. H. A. N. G. ;
FABOZZI, F. R. A. N. K. J. .
QUANTITATIVE FINANCE, 2022, 22 (10) :1893-1903
[7]  
Close L, 2020, Journal of Intelligent Learning Systems and Applications, V12, P83, DOI [10.4236/jilsa.2020.124005, 10.4236/jilsa.2020.124005, DOI 10.4236/JILSA.2020.124005]
[8]   The relevance of goal programming for financial portfolio management: a bibliometric and systematic literature review [J].
Colapinto, Cinzia ;
Mejri, Issam .
ANNALS OF OPERATIONS RESEARCH, 2025, 346 (02) :917-943
[9]  
Cont R., 2022, arXiv
[10]   Distributionally robust end-to-end portfolio construction [J].
Costa, Giorgio ;
Iyengar, Garud N. .
QUANTITATIVE FINANCE, 2023, 23 (10) :1465-1482