Interpretable Machine Learning Model for Predicting the Prognosis of Guillain-Barré Syndrome Patients

被引:1
作者
Guo, Junshuang [1 ,2 ]
Zhang, Ruike [1 ]
Dong, Ruirui [1 ]
Yang, Fan [1 ]
Wang, Yating [1 ]
Miao, Wang [1 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, Neurointens Care Unit, Zhengzhou 450000, Henan, Peoples R China
[2] Cent South Univ, Sch Basic Med Sci, Dept Immunol, Changsha, Hunan, Peoples R China
关键词
Guillain-Barr & eacute; syndrome; machine learning; prognosis; SHAP;
D O I
10.2147/JIR.S471626
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background: Machine learning (ML) is increasingly used in medical predictive modeling, but there are no studies applying ML to Materials and Methods: The medical records of 223 patients with GBS were analyzed to construct predictive models that affect patient prognosis. Least Absolute Shrinkage and Selection Operator (LASSO) was used to filter the variables. Decision Trees (DT), Light Gradient Boosting Machine (LGBM) and Logistic Regression (LR) were used to construct predictive models. Clinical data from 55 GBS patients were used to validate the model. SHapley additive explanation (SHAP) analysis was used to explain the model. Single sample gene set enrichment analysis (ssGSEA) was used for immune cell infiltration analysis. Results: The AUCs (area under the curves) of the 8 ML algorithms including DT, RF, XGBoost, KNN, NB, NN, LGBM and LR were as follows: 0.75, 0.896 0.874, 0.666, 0.742, 0.765, 0.869 and 0.744. The accuracy of XGBoost (0.852) was the highest, followed by LGBM (0.803) and RF (0.758), with F1 index of 0.832, 0.794, and 0.667, respectively. The results of the validation set data analysis showed AUCs of 0.839, 0.919, and 0.733 for RF, XGBoost, and LGBM, respectively. SHAP analysis showed that the SHAP values of blood neutrophil/lymphocyte ratio (NLR), age, mechanical ventilation, hyporeflexia and abnormal glossopharyngeal vagus nerve were 0.821, 0.645, 0.517, 0.401 and 0.109, respectively. Conclusion: The combination of NLR, age, mechanical ventilation, hyporeflexia and abnormal glossopharyngeal vagus used to predict short-term prognosis in patients with GBS has a good predictive value.
引用
收藏
页码:5901 / 5913
页数:13
相关论文
共 32 条
[21]   Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma [J].
Singal, Amit G. ;
Mukherjee, Ashin ;
Elmunzer, B. Joseph ;
Higgins, Peter D. R. ;
Lok, Anna S. ;
Zhu, Ji ;
Marrero, Jorge A. ;
Waljee, Akbar K. .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2013, 108 (11) :1723-1730
[22]   Admission sodium level and prognosis in adult Guillain-Barre syndrome [J].
Sipila, Jussi O. T. ;
Kauko, Tommi ;
Soilu-Hanninen, Merja .
INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2017, 127 (04) :344-349
[23]   Validation in prediction research: the waste by data splitting COMMENTARY [J].
Steyerberg, Ewout W. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2018, 103 :131-133
[24]   Early predictors of functional disability in Guillain-Barre Syndrome [J].
Tunc, Abdulkadir .
ACTA NEUROLOGICA BELGICA, 2019, 119 (04) :555-559
[25]   Second intravenous immunoglobulin dose in patients with Guillain-Barre syndrome with poor prognosis (SID-GBS): a double-blind, randomised, placebo-controlled trial [J].
Walgaard, Christa ;
Jacobs, Bart C. ;
Lingsma, Hester F. ;
Steyerberg, Ewout W. ;
van den Berg, Bianca ;
Doets, Alexandra Y. ;
Leonhard, Sonja E. ;
Verboon, Christine ;
Huizinga, Ruth ;
Drenthen, Judith ;
Arends, Samuel ;
Budde, Ilona Kleine ;
Kleyweg, Ruud P. ;
Kuitwaard, Krista ;
van der Meulen, Marjon F. G. ;
Samijn, Johnny P. A. ;
Vermeij, Frederique H. ;
Kuks, Jan B. M. ;
van Dijk, Gert W. ;
Wirtz, Paul W. ;
Eftimov, Filip ;
van der Kooi, Anneke J. ;
Garssen, Marcel P. J. ;
Gijsbers, Cees J. ;
de Rijk, Maarten C. ;
Visser, Leo H. ;
Blom, Roderik J. ;
Linssen, Wim H. J. P. ;
van der Kooi, Elly L. ;
Verschuuren, Jan J. G. M. ;
van Koningsveld, Rinske ;
Dieks, Rita J. G. ;
Gilhuis, H. Job ;
Jellema, Korne ;
van der Ree, Taco C. ;
Bienfait, Henriette M. E. ;
Faber, Catharina G. ;
Lovenich, Harry ;
van Engelen, Baziel G. M. ;
Groen, Rutger J. ;
Merkies, Ingemar S. J. ;
van Oosten, Bob W. ;
van der Pol, W. Ludo ;
van der Meulen, Willem D. M. ;
Badrising, Umesh A. ;
Stevens, Martijn ;
Breukelman, Albert-Jan J. ;
Zwetsloot, Casper P. ;
van der Graaff, Maaike M. ;
Wohlgemuth, Marielle .
LANCET NEUROLOGY, 2021, 20 (04) :275-283
[26]   Prediction of Respiratory Insufficiency in Guillain-Barre Syndrome [J].
Walgaard, Christa ;
Lingsma, Hester F. ;
Ruts, Liselotte ;
Drenthen, Judith ;
van Koningsveld, Rinske ;
Garssen, Marcel J. P. ;
van Doom, Pieter A. ;
Steyerberg, Ewout W. ;
Jacobs, Bart C. .
ANNALS OF NEUROLOGY, 2010, 67 (06) :781-787
[27]   Application of machine learning algorithm in prediction of lymph node metastasis in patients with intermediate and high-risk prostate cancer [J].
Wang, Xiangrong ;
Zhang, Xiangxiang ;
Li, Hengping ;
Zhang, Mao ;
Liu, Yang ;
Li, Xuanpeng .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (11) :8759-8768
[28]   Risk factors for the severity of Guillain-Barre syndrome and predictors of short-term prognosis of severe Guillain-Barre syndrome [J].
Wen, Puyuan ;
Wang, Lisha ;
Liu, Hong ;
Gong, Li ;
Ji, Han ;
Wu, Hongliang ;
Chu, Wenzheng .
SCIENTIFIC REPORTS, 2021, 11 (01)
[29]   Guillain-Barre syndrome [J].
Willison, Hugh J. ;
Jacobs, Bart C. ;
van Doorn, Pieter A. .
LANCET, 2016, 388 (10045) :717-727
[30]   Predictors for mechanical ventilation and short-term prognosis in patients with Guillain-Barre syndrome [J].
Wu, Xiujuan ;
Li, Chunrong ;
Zhang, Bing ;
Shen, Donghui ;
Li, Ting ;
Liu, Kangding ;
Zhang, Hong-Liang .
CRITICAL CARE, 2015, 19