Convex regularized recursive kernel risk-sensitive loss adaptive filtering algorithm and its performance analysis

被引:0
作者
Su, Ben-Xue [1 ]
Yang, Kun-De [1 ]
Wu, Fei-Yun [2 ]
Liu, Tian-He [1 ]
Yang, Hui-Zhong [1 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian, Shaanxi, Peoples R China
[2] Jimei Univ, Nav Coll, Xiamen, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Kernel risk-sensitive loss (KRSL); Convex regularized; Normalized mean squared deviation (NMSD); MAXIMUM CORRENTROPY CRITERION; LMS;
D O I
10.1016/j.sigpro.2024.109568
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the context of channel estimation amid non -Gaussian impulse noise, traditional non -kernel -space methods face challenges of divergence, while many kernel -space methods fail to fully exploit the a priori information embedded in the channel. To address this, we introduce a robust sparse recursive adaptive filtering algorithm named convex regularized recursive kernel risk -sensitive loss (CR-RKRSL) in this paper. By combining the KRSL with a convex function constraint term, our proposed algorithm maximizes the utilization of channel a priori information. Furthermore, we delve into the theoretical aspects of the proposed algorithm, presenting expressions for the convergence and steady-state error. Through extensive simulation results, we demonstrate that CR-RKRSL outperforms the APSA, LHCAF, PRMCC, CR-RMC, RZAMCC algorithms. In comparison to existing algorithms, CR-RKRSL exhibits superior robustness and faster convergence, particularly in scenarios involving highly sparse systems.
引用
收藏
页数:13
相关论文
共 57 条
[1]   Performance Analysis of the Standard Constrained Maximum Versoria Criterion Based Adaptive Algorithm [J].
Abdelrhman, Omer M. ;
Dou, Yuzi ;
Li, Sen .
IEEE SIGNAL PROCESSING LETTERS, 2023, 30 :125-129
[2]   Multi-Snapshot Spectrum Sensing for Cognitive Radar via Block-Sparsity Exploitation [J].
Aubry, Augusto ;
Carotenuto, Vincenzo ;
De Maio, Antonio ;
Govoni, Mark A. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (06) :1396-1406
[3]   Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication: From Subspace Methods to Compressed Sensing [J].
Berger, Christian R. ;
Zhou, Shengli ;
Preisig, James C. ;
Willett, Peter .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) :1708-1721
[4]   Robust Constrained Generalized Correntropy and Maximum Versoria Criterion Adaptive Filters [J].
Bhattacharjee, Sankha Subhra ;
Shaikh, Mohammed Aasim ;
Kumar, Krishna ;
George, Nithin V. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (08) :3002-3006
[5]   Robustness and risk-sensitive filtering [J].
Boel, RK ;
James, MR ;
Petersen, IR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (03) :451-461
[6]   An Improved Proportional Normalization Least Mean p-Power Algorithm for Adaptive Filtering [J].
Cai, Banggui ;
Wang, Biao ;
Zhu, Boyu ;
Zhu, Yunan .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (11) :6951-6965
[7]   Kernel Risk-Sensitive Loss: Definition, Properties and Application to Robust Adaptive Filtering [J].
Chen, Badong ;
Xing, Lei ;
Xu, Bin ;
Zhao, Haiquan ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (11) :2888-2901
[8]  
Chen BD, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), P921, DOI 10.1109/ICDSP.2015.7252011
[9]   Steady-State Mean-Square Error Analysis for Adaptive Filtering under the Maximum Correntropy Criterion [J].
Chen, Badong ;
Xing, Lei ;
Liang, Junli ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (07) :880-884
[10]  
Chen YL, 2009, INT CONF ACOUST SPEE, P3125, DOI 10.1109/ICASSP.2009.4960286