An artificial intelligence-enabled electrocardiogram algorithm for the prediction of left atrial low-voltage areas in persistent atrial fibrillation

被引:1
|
作者
Tao, Yirao [1 ,2 ,3 ]
Zhang, Deyun [4 ,5 ]
Tan, Chen [6 ]
Wang, Yanjiang [1 ,2 ,3 ]
Shi, Liang [1 ,2 ,3 ]
Chi, Hongjie [1 ,2 ,3 ]
Geng, Shijia [4 ,5 ]
Ma, Zhimin [7 ]
Hong, Shenda [8 ,9 ]
Liu, Xing Peng [1 ,2 ,3 ]
机构
[1] Capital Med Univ, Beijing Chaoyang Hosp, Dept Cardiol, Beijing 100020, Peoples R China
[2] Capital Med Univ, Beijing Chaoyang Hosp, Heart Ctr, Beijing, Peoples R China
[3] Capital Med Univ, Beijing Chaoyang Hosp, Beijing Key Lab Hypertens, Beijing, Peoples R China
[4] HeartVoice Med Technol, Hefei, Peoples R China
[5] HeartRhythm HeartVoice Joint Lab, Beijing, Peoples R China
[6] Hebei Yanda Hosp, Dept Cardiol, Hebei, Hebei, Peoples R China
[7] Heart Rhythm Cardiovasc Hosp, Dept Cardiol, Dezhou 251100, Peoples R China
[8] Peking Univ, Natl Inst Hlth Data Sci, Beijing 100191, Peoples R China
[9] Peking Univ Hlth Sci Ctr, Inst Med Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
artificial intelligence algorithm; deep learning model; electrocardiogram; low-voltage area; persistent atrial fibrillation; ABLATION;
D O I
10.1111/jce.16373
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ObjectivesWe aimed to construct an artificial intelligence-enabled electrocardiogram (ECG) algorithm that can accurately predict the presence of left atrial low-voltage areas (LVAs) in patients with persistent atrial fibrillation.MethodsThe study included 587 patients with persistent atrial fibrillation who underwent catheter ablation procedures between March 2012 and December 2023 and 942 scanned images of 12-lead ECGs obtained before the ablation procedures were performed. Artificial intelligence-based algorithms were used to construct models for predicting the presence of LVAs. The DR-FLASH and APPLE clinical scores for LVA prediction were calculated. We used a receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis to evaluate model performance.ResultsThe data obtained from the participants were split into training (n = 469), validation (n = 58), and test sets (n = 60). LVAs were detected in 53.7% of all participants. Using ECG alone, the deep learning algorithm achieved an area under the ROC curve (AUROC) of 0.752, outperforming both the DR-FLASH score (AUROC = 0.610) and the APPLE score (AUROC = 0.510). The random forest classification model, which integrated a probabilistic deep learning model and clinical features, showed a maximum AUROC of 0.759. Moreover, the ECG-based deep learning algorithm for predicting extensive LVAs achieved an AUROC of 0.775, with a sensitivity of 0.816 and a specificity of 0.896. The random forest classification model for predicting extensive LVAs achieved an AUROC of 0.897, with a sensitivity of 0.862, and a specificity of 0.935.ConclusionThe deep learning model based exclusively on ECG data and the machine learning model that combined a probabilistic deep learning model and clinical features both predicted the presence of LVAs with a higher degree of accuracy than the DR-FLASH and the APPLE risk scores.
引用
收藏
页码:1849 / 1858
页数:10
相关论文
共 50 条
  • [21] Left Atrial Low-Voltage Areas Predict the Risk of Atrial Fibrillation Recurrence after Radiofrequency Ablation
    Mitran, Raluca-Elena
    Popa-Fotea, Nicoleta-Monica
    Iorgulescu, Corneliu
    Nastasa, Alexandrina
    Pupaza, Adelina
    Gondos, Viviana
    Petre, Ioana-Gabriela
    Paja, Steliana-Cosmina
    Vatasescu, Radu-Gabriel
    BIOMEDICINES, 2023, 11 (12)
  • [22] Severity of anemia is correlated with the prevalence of left atrial low-voltage areas in patients with atrial fibrillation ablation
    Matsuda, Y.
    Masuda, M.
    Uematsu, H.
    Sugino, A.
    Ooka, H.
    Kudo, S.
    Fujii, S.
    Asai, M.
    Okamoto, S.
    Ishihara, T.
    Nanto, K.
    Tsujimura, T.
    Hata, Y.
    Higashino, N.
    Mano, T.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [23] The influence of left atrial volume on left atrial voltage in persistent atrial fibrillation patients without low-voltage zone: outcomes of pulmonary vein isolation
    Marzak, Halim
    Riviere, Helene
    Fitouchi, Simon
    Cardi, Thomas
    Kanso, Mohamad
    Morel, Olivier
    Jesel, Laurence
    EUROPACE, 2024, 26 (07):
  • [24] Artificial Intelligence-Enabled Electrocardiogram in the Detection of Patients at Risk of Atrial Secondary Mitral Regurgitation
    Naser, Jwan A.
    Lee, Eunjung
    Michelena, Hector I.
    Lin, Grace
    Pellikka, Patricia A.
    Nkomo, Vuyisile T.
    Noseworthy, Peter A.
    Friedman, Paul A.
    Attia, Zachi I.
    Pislaru, Sorin V.
    CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2023, 16 (09): : 552 - 554
  • [25] Ablation of Persistent Atrial Fibrillation Targeting Low-Voltage Areas With Selective Activation Characteristics
    Jadidi, Amir S.
    Lehrmann, Heiko
    Keyl, Cornelius
    Sorrel, Jeremie
    Markstein, Viktor
    Minners, Jan
    Park, Chan-Il
    Denis, Arnaud
    Jais, Pierre
    Hocini, Meleze
    Potocnik, Clemens
    Allgeier, Juergen
    Hochholzer, Willibald
    Herrera-Sidloky, Claudia
    Kim, Steve
    El Omri, Youssef
    Neumann, Franz-Josef
    Weber, Reinhold
    Haissaguerre, Michel
    Arentz, Thomas
    CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2016, 9 (03):
  • [26] Persistent atrial fibrillation without the evidence of low-voltage areas: a prospective randomized trial
    Kaiser, Bastian
    Huber, Carola
    Pirozzolo, Giancarlo
    Maier, Pasqual
    Bekeredjian, Raffi
    Theis, Cathrin
    JOURNAL OF INTERVENTIONAL CARDIAC ELECTROPHYSIOLOGY, 2024, 67 (01) : 83 - 90
  • [27] An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
    Attia, Zachi, I
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Asirvatham, Samuel J.
    Deshmukh, Abhishek J.
    Gersh, Bernard J.
    Carter, Rickey E.
    Yao, Xiaoxi
    Rabinstein, Alejandro A.
    Erickson, Brad J.
    Kapa, Suraj
    Friedman, Paul A.
    LANCET, 2019, 394 (10201): : 861 - 867
  • [28] Persistent atrial fibrillation without the evidence of low-voltage areas: a prospective randomized trial
    Bastian Kaiser
    Carola Huber
    Giancarlo Pirozzolo
    Pasqual Maier
    Raffi Bekeredjian
    Cathrin Theis
    Journal of Interventional Cardiac Electrophysiology, 2024, 67 : 83 - 90
  • [29] Left atrial low-voltage zone ablation of persistent atrial fibrillation in a patient with myotonic dystrophy: A case report
    Otsubo, Toyokazu
    Tsuchiya, Takeshi
    Yamaguchi, Takanori
    Takahashi, Naohiko
    JOURNAL OF ARRHYTHMIA, 2018, 34 (03) : 302 - 304
  • [30] Impact of low-voltage zones on the left atrial anterior wall on the reduction in the left atrial appendage flow velocity in persistent atrial fibrillation patients
    Yuichi Hori
    Shiro Nakahara
    Naoki Nishiyama
    Reiko Fukuda
    Tomoaki Ukaji
    Hirotsugu Sato
    Yuri Koshikawa
    Shu Inami
    Tetsuya Ishikawa
    Sayuki Kobayashi
    Yoshihiko Sakai
    Isao Taguchi
    Journal of Interventional Cardiac Electrophysiology, 2019, 56 : 299 - 306